Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2024

Supplementary data

Filter prepared from Janus-like graphene oxide nanosheets with heterogeneous nanochannels for highly efficient dye removal

Yingkun Song¹⁺, Zejun Zhang¹⁺, Hongsheng Yang¹, Xin Luan², Jianming Zhang^{1*}, and Gang Wei^{2*}

¹ Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao 266042, China

² College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China

+ Equal contribution to this work

Corresponding authors:

E-mail: zjm@qust.edu.cn (J.M. Zhang); weigroup@qdu.edu.cn/wei@uni-bremen.de (G. Wei)

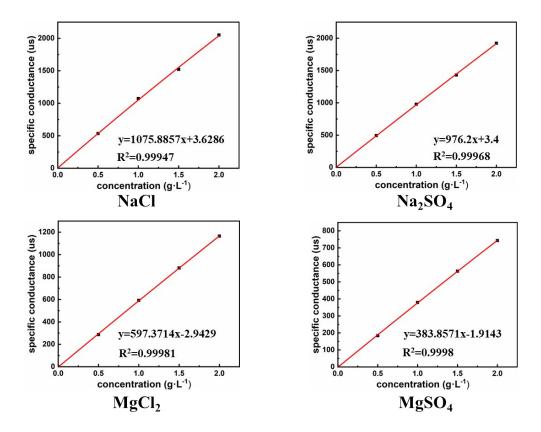


Fig. S1. Standard curves of different salt concentrations and conductivity.

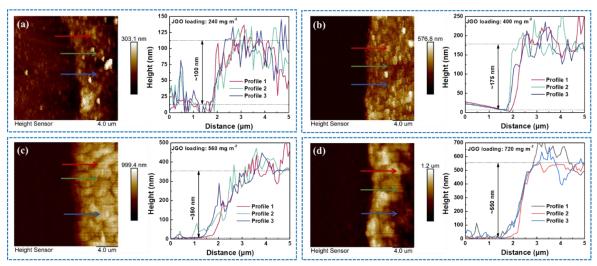


Fig. S2. Membrane thickness under different JGO loads.

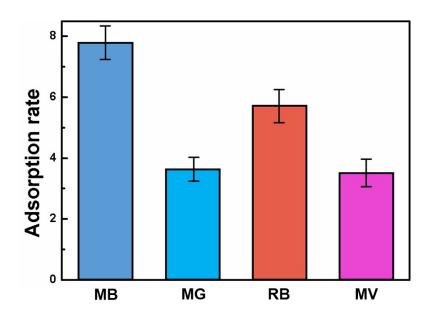


Fig. S3. Adsorption of different dyes by JGO filter.

Table S1. Rejection rate and Permeability of JGO filters for different types of dyes.

Type of dye	MW (g mol ⁻¹)	Size (nm)	Analyte charge	Permeability (L m ⁻² h ⁻¹ bar ⁻¹)	Rejection (%)
Rhodamine B	479.01	1.6×1.2	+	122 ± 10	~97.7
Methyl Viologen	408.03	1.3×1.3	+	138±5	~99.9
Malachite Green	364.91	1.3×1.0	1-	125 ± 10	~99.9
Methylene Blue	327.33	1.3×0.5	+	110±8	~98.4

Table S2. Retention rate and flux of JGO filters for different types of inorganic salts.

Salt	MW (g mol-1)	Permeability (L m ⁻² h ⁻¹ bar ⁻¹)	Rejection (%)
NaCl	58.44	140±5	~7.85
Na_2SO_4	142.04	139 ± 10	~10.04
MgCl_2	95.21	142±7	~10.39
${ m MgSO_4}$	120.37	137±5	~11.57

Table S3. Comparison of properties of JGO filters with other graphene filters.

References	Materials	Type of dye	Permeability (L m ⁻² h ⁻¹ bar ⁻¹)	Rejection (%)
	JGO	RB	850	~65.9
This work			262	~84.2
			132	~97.6
		MnB	118	~98.4
		MV	143	~99.9
10.1039/d0ta00804d	TNSC	RB	400	~20
	NSC-GO	RB	279	~87
10.1038/ncomms3979	GO	MV	71	~80
		MnB	71	~90
		RB	71	~72
10.1016/j.scib.2018.05.015	rGO	DY	48	~67
		MnB	56.3	~95.3
		RB	56.3	~98
10.1016/:1 2019.01.062	GO	MB	20.23	~90.15
10.1016/j.carbon.2018.01.062		EB	20.23	~98.68
10.1016/j.apsusc.2020.146308	brGO	MB	21.8	~99.2
10.1016//	GO	MB	27.6	~66
10.1016/j.apsusc.2020.146308		Pararosaniline	53.7	~99.2
10.1021/es400571g	GO	MB	30	~95