Supporting Information

Two Zn sources (ZnO nanoparticles and ZnSO₄) differentially affect lipid metabolism via ferroptosis pathway and SLC7A11^{K23} acetylation by HDAC8 and HDAC6 in a freshwater teleost

Yi-Chuang Xu,^{‡a} Hua Zheng,^{‡a} Xiao-Ying Tan,^a Christer Hogstrand,^c Tao Zhao,^a Xiao-

Lei Wei^a and Zhi Luo^{*ab}

^aHubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China

^bLaboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China ^cDiabetes and Nutritional Sciences Division, School of Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK *Corresponding author at: Zhi Luo, Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China, Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114;

E-mail address: luozhi99@mail.hzau.edu.cn; luozhi99@aliyun.com (Z. Luo).

‡ These two authors contributed equally.

Abbreviations:

ACCa, acetyl-CoA carboxylase a; acad, acyl-CoA dehydrogenase; ACSL, acyl-CoA synthetase long chain family member; ATGL, adipose triglyceride lipase; CBS, cystathionine beta-synthase; CF, Condition factor; CPT 1. carnitine palmitoyltransferase 1; CTH, cystathionine gamma-lyase; ELOVL6, ELOVL fatty acid elongase 6; DMEM, Dulbecco's Modified Eagle's medium; FAS, fatty acid synthase; FBS, fetal bovine serum; FBW, final mean body weight; FCR, feed conversion rate; FSP1, Ferroptosis suppressor protein 1; GCLC, glutamate-cysteine ligase catalytic subunit; GCLM, glutamate-cysteine ligase regulator subunit; GPX, glutathione peroxidase; GSR, glutathione reductase; GSS, Glutathione synthetase; GSSG, glutathione disulfide; GST, glutathione S-transferase; H&E, Hematoxylin and eosin; HDAC, histone deacetylase; HEK-293, human embryonic kidney 293 cell; HSL, hormone-sensitive lipase; LDs, lipid droplets; MTF-1, metal response element binding transcription factor 1; NAFLD, non-alcoholic fatty liver disease; NEFA, non-esterified free fatty acids; ORO, Oil red O; ORFs, open reading frames; PPARA, peroxisome proliferator activated receptor alpha; PTGS2, prostaglandin G/H synthase 2; qRT-PCR, Real-time quantitative PCR; RPMI, Roswell Park Memorial Institute; SGR, specific growth rate; SDS, sodium dodecyl sulfate; siRNA, small interference RNA; SLC7A11, solute carrier family 7 member 11; VSI, viscerosomatic index; WG, weight gain.

Text S1

Animals feeding, management, and sampling

In this study, a total of 180 juvenile grass carp with a uniform size (initial mean weight: 3.54 ± 0.00 g, mean \pm S.E.M.) were randomly allocated to nine 300-L circular aquariums, with 20 fish per tank. Each experimental diet was assigned to three replicate tanks, and the fish were fed to satiation twice daily over a period of 8 weeks. Throughout the feeding experiment, water temperature, dissolved oxygen, NH4-N, nitrite, and Zn levels were regularly monitored. The water temperature was maintained

within the range of 28.7 - 29.3°C, dissolved oxygen levels were kept at \geq 5.8 mg L⁻¹, NH₄-N levels remained below 0.09 mg L⁻¹, nitrite levels were below 0.01 mg L⁻¹, and Zn concentration in the water was 0.04 ± 0.00 mg L⁻¹.

Feeding experiment lasted for 8 weeks. Then, 12 fish were selected randomly from each tank, and their liver was isolated on ice, and fixed in 4% buffered formalin solution for histological analysis or 2.5% glutaraldehyde solution for ultrastructural observation. The liver samples from other fish were frozen quickly in liquid nitrogen and then kept in a -80°C freezer for analysis of Zn levels, TG and NEFA contents, enzymatic activities, mRNA and protein abundance.

Text S2

Histological and ultrastructural observation

To perform ORO staining, liver tissues were frozen at -25°C and sectioned into 5 µm thick slices after sucrose-induced dehydration. The sections were then stained with oil-saturated O solutions and subsequently washed twice with 60% isopropanol. Being washed twice in distilled water and sealed with glycerin jelly, the sections were imaged under a light microscope (Olympus BX53, Tokyo, Japan). Image J software (NIH, Bethesda, MD, USA) was utilized to analyze the relative areas of lipid droplets (LDs) in the ORO staining.

For H&E staining, the samples were sectioned into 5-µm thick slices. The sections were then stained with H&E dye, undergoing a process of dehydration in graded ethanol concentrations, and finally embedded in paraffin. The sections were imaged under a light microscope (Olympus BX53, Tokyo, Japan).

For TEM observation, the samples underwent a series of preparation steps. Firstly, they were postfixed in a solution of 1% osmium tetroxide in sodium cacodylate. Then, the samples were treated with 1% uranyl acetate, dehydrated using ethanol, and embedded in resin. Subsequently, the samples were stained with uranyl acetate and lead citrate. The prepared grids were examined using a FEI Tecnai G^2 20 TWIN transmission electron microscope operating at an acceleration voltage of 200 kV.

Text S3

Immunoblot and immunoprecipitation

For immunoblot analysis, the samples were lysed in RIPA buffer (#P0013B, Beyotime Biotechnology) supplemented with a protease, phosphatase inhibitor cocktail (#P1045, Beyotime Biotechnology), and deacetylase inhibitor cocktail (#P1112, Beyotime Biotechnology). Protein samples were loaded onto SDS-polyacrylamide gels and subsequently transferred to polyvinylidene fluoride (PVDF) membranes. The membranes were blocked with 4% bovine serum albumin (BSA, #ST023, Beyotime Biotechnology) for 1 hour at room temperature. Primary antibodies were incubated with the membranes overnight at 4 °C. Subsequently, the membranes were treated with the appropriate secondary antibodies. After thorough washing, the membranes were visualized using ECL (#P0018FS, Beyotime Biotechnology).

For immunoprecipitation assays, the samples were lysed using NP-40 lysis solution (#P0013F, Beyotime Biotechnology) supplemented with a protease and deacetylase inhibitor cocktail (#P1112, Beyotime Biotechnology). After incubation with the required antibodies overnight at 4 °C, protein A/G magnetic beads (#HY-K0202, Med Chem Express, New Jersey, USA) were added. The immunocomplexes were then washed using NP-40 lysis buffer, and subsequent immunoblot experiments were performed.

Text S4

Plasmid construction

ClonExpressTM II One Step Cloning Kit (#C112, Vazyme, Piscataway, NJ, USA) was employed to subclone the open reading frames (ORFs) of SLC7A11, HDAC6, and HDAC8 sequences into pcDNA3.1 (+) vector with GFP-tag, HA-tag, and 6×His -tag sequences, respectively. Mutations in SLC7A11 were conducted using the Mut Express

II Fastmutagensis Kit (#C214, Vazyme). The ORFs of HDAC3 and HDAC8 were subcloned into the pGEX-6P-1 vector for prokaryotic expression.

Text S5

Cystine uptake assay

Cells were seeded in 6-well plates at an optimal confluency. After the respective treatment, the cells were washed three times with PBS at room temperature. Subsequently, the cells were pre-incubated in 1 ml cystine uptake buffer (0.4 mM MgSO₄, 1.8 mM KCl, 1.3 mM CaCl₂, 25 mM triethylammonium bicarbonate, 122 mM choline chloride, 1.2 mM potassium phosphate, 10 mM glucose, pH7.4) for 15 min. Following the pre-incubation, 1 μ M L-cystine was added, and the cells were further incubated at 37 °C for 1 h. Next, 500 μ l of the uptake buffer was collected from each well and centrifuged at 14,000 rpm for 2 minutes. The cystine concentration was determined using a customized kit from Shanghai Enzyme-linked Biotechnology Co., Ltd. (Shanghai, China), and the values were normalized to cell counts from each well.

 	1		
 Ingredients (g kg ⁻¹)	Control	ZnO NPs	ZnSO ₄
 Fish meal	80	80	80
casein	35	35	35
Rice bran	110	110	110
Soybean meal	200	200	200
Rapeseed meal	250	250	250
Wheat Starch	250	250	250
Fish oil	20	20	20
Soybean oil	10	10	10
Choline chloride	1.5	1.5	1.5
Lecithin	1	1	1
Vitamin premix	4	4	4
Mineral premix	7.5	7.5	7.5
DL-methionine	0.15	0.15	0.15
L-lysine	0.4	0.4	0.4
L-threonine	0.4	0.4	0.4
$Ca(H_2PO_4)_2 \cdot H_2O$	20	20	20
Cellulose	10.05	10.008	9.9
ZnO NPs		0.042	
$ZnSO_4 \cdot 7H_2O$			0.150
Proximate analysis %, dry	weight		
Moisture	8.65	8.43	8.57
Crude protein	30.79	31.09	30.82
Crude lipid	6.80	6.63	6.31
Ash	7.59	7.64	7.67
Zn (mg kg ⁻¹)	57.36	81.12	81.09

Table S1. Feed formulation and proximate analysis (% dry matter).

Vitamin premix (mg or IU per kg diet): retinylacetate, 10000IU; cholecalciferol, 1000IU; all-rac-a-tocopheryl acetate, 30IU; menadione nicotinamide bisulfite, 7; thiamine hydrochloride, 6; riboflavin, 3; pyridoxine hydrochloride, 12; D-calcium pantothenate, 30; niacin, 50; biotin, 1; folic acid, 6; cyanocobalamine, 0.03. Mineral mixture (mg per kg diet): NaCl, 500; FeSO₄·7H₂O, 400; MnSO₄·H₂O, 40; CuSO₄·5H₂O, 12; CaIO₃·6H₂O, 1.5; Na₂SeO₃, 0.45; CoSO₄, 1.

	-	×1 /		
Genes	Forward primer (5'-3')	Reverse primer (5'-3')	Accession no.	
acadl1	CGAACTGCTCTGTAT	TCATTGGTTGGCAGG	XM051882736	
acaarr	GTGGC	TTGTG	AM051882750	
acadab	GAAGTTTGCTCAGGA	GAGGGTGTTCTGAAT	VM051012664	
acaaso	ACGCA	GTCGC	AM051913004	
<i></i>	GCTTGCGGCGGTTAT	AGCTGCCTCTCCAAC	C11009474	
асса	TACTG	CATTC	GU908474	
a o a 1 1 a	TACAGCTATTGCTCG	CCAGTGCCTCTGACC	MIZO205/9	
acsiia	CCCAC	TTGAA	WIK929308	
	TGGACCTGAGTACCG	AGGGTGTCTTTTCCA	MIZO205/7	
acs14	TTGTC	GGGAG	MK929567	
	CGAGCTGTCTTCTGG	AGGGCCCAGATTACG	110045011	
atgi	AGCAA	CTTTC	HQ845211	
	CCTCAACTAAACCCA	ATCATGGTCAGTCTC	FU201200	
атрв	AACCCC	AGGGC	EU391390	
0	ACCCTGAAGTACCCC	CAGAGGCATACAGG	DQ211096	
p-actin	ATCGA	GACAGC		
-1	GGTGGAGGACATCAT	AAGCAAGCATGTTTC	VM051000012	
CDSA	GGTGA	CCAGG	XM051889812	
-11	GGATTCGACCAGATT	GGATCTTGTTCATGC		
CDSD	TGCCC	GGACC	XM051906005	
	ACCATCCCCATGTGT	CTGCTGCTCTATCTCC		
српато	TCGTC	CGTG	KJ816/48	
- 1	AACGCCCACAAACCC	TCAGCCGTTCATAGA	VM051907077	
Cth	TACTA	GGTCC	XM051897977	
116	TTTCTACAACGGACC	CGGCATGCACCAGAT	XM051860058	
elovio	GGTCA	AGTTC		
<u>(1 - 1</u>	GCCGATCTCACCAAC	TAACCTGTCCTGACC	NC067232	
eej1a1	CAATC	AACCC		
C I	ATTGTCGGTGGTGGT	AAGCACAACTGTCTG	XM051917950	
<i>fsp1</i>	TTTGG	CGTTT		
gapdh	GGGAAACTGTGGAG	TGCAGCCTTGACCAC	GQ245759	

 Table S2. Primers used for quantitative real-time PCR (qRT-PCR) analysis.

	GGATGG	TTTCT		
	CACGGCATCCTTCAG	GAGTAGGGTGGTTGG		
gclc	TTCCT	GGTTG	XM051916883	
	TGTGGGAAGAGCTGG	TACTGCTCCCCTGTA	XM051901926	
gclm	AGAGT	CTGCT		
	GGGGTTACGTGTGCA	AACTCCTTGATCTCC	XX 4051010000	
gpx4	TCATC	GCCTC	XM051912906	
~~~	GAACACTACACGTCC	TCACGTTGTCCTTTCC	XM051860462	
gsr	AGGCA	CCAG		
hala	TGCTGAGCGTGTTTG	GGCAGCAGAGGGTC	110446220	
nsta	TTTGG	GATTAA	HQ440238	
222	CGAGCCTGTACAGTC	TGGACTAGATGCCGG	N77222000	
ppara	CCTTG	GGTTA	IVIZ / 2 / 200	
ntog 2	GCATTGCAGCCGAAT	AGCATTAACAGCCAC	30.6651061000	
pigs2	TCAAC	TCCCT	XM051861202	
slo7a11	GAGCCCATCTTCATG	AGTCTGCTGTGTTGA	XM051860495	
sic/ul1	CCATG	CCTCA		
srahn l	ACGGGGGATGGGGAA	TTATCACCACGGCCA	K 1162572	
sreopi	TACTCA	CTGAC	KJ162572	
zin l	CTAGATGAGGGCTTC	CATTCAACGAGTGCC	OP106500	
2101	CCGCT	GTCCA	01100377	
zin4	TCTTGCGGGCGTCTA	AAGTTATGGATGCCG	OP106600	
2104	TTTCT	TCGCC	01100000	
zin 5	TTAGGTGATTTGGCG	TGGAGCATTTCGGGC	OP106601	
2105	GTGCT	ATCAT	01100001	
zinh	GAAGGTTTGTCCAGC	CATACCCGCCTTCAG	OP106602	
2100	GGTCT	CAAGA	01 100002	
zin7	CCAGTGCAGTCAAAC	AGAGTGAGAGTGCG	OP106603	
2107	ACGGA	AGTGTC	01100003	
zin8	AAAACGGCTCTCTGT	ATTACCCAACCCAAA	OP106604	
<i>21p</i> 0	CCACG	GGCGG	JI 10000T	
zin9	TCCAGAAGCAGCAAG	AGCAGGAGCCTTATG	OP106605	
<b>-</b> <i>ip</i> >	GACTG	CAACA	01100005	

-: 10	TTCTGGTGCCCATCC	CCTGCTAGTGCAGTC	00106606	
zipi0	TCAAC AGTCC		OP106606	
-in 12	ATCAGCCCTTACACA	TACGAGTGGCTTTCC	0010((00	
zipis	GAGCC	AACGG	OP100008	
-in 1 /	GCGCTATGCCAACTC	TAACATCCACCCGTT	OP106600	
21014	CAATG	CCAGC	OF 100009	
=n+1	GCAACCCGATGTGGT	GGCTGTTGTTGTGAT	OP106610	
2111	GATTG	TCCCG	OF 100010	
znt1	CTCAATCAGTCCGGG	CACACCCTCCAGCAG	OP106612	
21114	CATCT	AATGA		
<del>-</del> 10 + 5	ATGTGCTGTCTGGTG	TGATGAAGCGAGGCA	OP106613	
znij	GAGTG	GAGAC		
<del>7</del> 1476	CGAGAGGAAAGTGTC	ACACCAGATTCAACA	OP106614	
21110	GCCTT	CGCCA		
znt7	CGCTAGAACCCCCTG	TGTCCTCCATGTGAA	OP106615	
21117	ATGTG	TGCCC		
<del>7</del> 11 t 8	GCCCAGAACGAGCA	CTGTAAAGATCGCCG	OP106616	
21110	GAAACT	GAGGA	01100010	
znt0	TTGGCGTGGGTTTAT	GGCGATGTAACGCAT	OP106617	
21119	ACGGG	GTTGG	01100017	
<del>7</del> nt10	ACTGGCTAAAGGACG	CCACCAGGACAACAG	OP106618	
211110	GAACG	GAGAG	01100010	

Abbreviation: *acca*, acetyl-CoA carboxylase a; *acad*, acyl-CoA dehydrogenase; acsl, acyl-CoA synthetase long chain family member; *atgl*, adipose triglyceride lipase; *atp8*, ATP synthase F0 subunit 8; cbs, cystathionine beta-synthase; *cpt 1*, carnitine palmitoyl transferase 1; *cth*, cystathionine gamma-lyase; *dgat*, diacylglycerol O-acyltransferase; *elovl6*, ELOVL fatty acid elongase 6; *fas*, fatty acid synthase; *fsp1*, Ferroptosis suppressor protein 1; *gapdh*, glyceraldehyde-3-phosphate dehydrogenase; *gclc*, glutamate-cysteine ligase, catalytic subunit; *gclm*, glutamate-cysteine ligase, modifier subunit; *gpx*, glutathione peroxidase; *gsr*, glutathione reductase; *hsl*, hormone-sensitive lipase; *ppara*, peroxisome proliferator activated receptor alpha; *ptgs2*, prostaglandin G/H synthase 2; *slc7a11*, solute carrier family 7 member 11.

'able S3. siRNA sequences.		
sense	antisense	
GAGCUUCGCUGAUCUUUC	AGAAAGAUCAGCGAAGCU	
UTT	CTT	
GCACCAUCAAAGGGAAUC	AGAUUCCCUUUGAUGGUG	
UTT	CTT	
	A sequences. sense GAGCUUCGCUGAUCUUUC UTT GCACCAUCAAAGGGAAUC UTT	

	Forward primer (5'-3')	Reverse primer (5'-3')
pcDNA3.1-	ctagcgtttaaacttaagcttATGCCC	aacgggccctctagactcgagTCAC
FL-SLC7A11	AGAAGGACTGTGTCA	AGATCCTCTTCAGAGATG
		AGTT
pcDNA3.1-	cccctgggatccccggaattcATGG	gtcacgatgcggccgctcgagTTAA
HDAC6	ATCCTGTTCCAGTTTCCA	GCGTAGTCTGGGACGTCG
pcDNA3.1-	ctagcgtttaaacttaagcttGCCACC	aacgggccctctagactcgagCTAA
HDAC8	ATGGTGCATCATCA	TGGTGATGGTGATGATGA
		ACT
pcDNA3.1-	AGTTCCACATCCCagaGCG	CtctGGGATGTGGAACTGA
SLC7A11	GATCTGACTCCAAGTAAT	CACAGTCCTTCTG
K12R	TTT	
pcDNA3.1-	TTGGAGAGagaGACCCTCT	AGGGTCtctCTCTCCAAAA
SLC7A11	CAAATCAAATGGAGA	TTACTTGGAGTCAGATC
K23R		
pcDNA3.1-	CCCTCTCagaTCAAATGGA	CATTTGAtctGAGAGGGTC
SLC7A11	GACTCCCACGCCG	TTTCTCTCCAAAATTAC
K27R		
pcDNA3.1-	ACTGCGAagaAAGGTGAC	TCACCTTtctTCGCAGTTCC
SLC7A11	CCTGCTCCGAGGAA	ACCTTCTCCTCG
K45R		
pcDNA3.1-	TGAAGAGGATCTGGTGA	GTCACCAGATCCTCTTCA
SLC7A11 2-	CCCTGCTCCGAGGAAT	GAGATGAGTTTCTGC
46aa mutant		
pcDNA3.1-	GTGGAACTGCGAAAGAA	CTTCTTTCGCAGTTCCAC
SLC7A11	GATCGAAAGAAAACCCA	CTTCTCCTCGGGGGGC
47-472	AATGGTT	
mutant		

 Table S4. Primers used for plasmid construction of expression vector.



**Fig S1.** Particle characterization and physicochemical properties of ZnO NP. (A) Transmission electron microscopy (TEM) micrograph of the ZnO NP; (B) TEM elemental mapping image of the ZnO NP; (C) The intensity-weighted average hydrodynamic diameter in the distilled water of ZnO NP; (D) Zeta potential in the distilled water of ZnO NP.



**Fig S2.** The effects of dietary ZnO NPs and ZnSO₄ on hepatic Zn metabolism. (A) Zn content; (B) The mRNA levels of ZnT family proteins; (C) The mRNA levels of ZIP family proteins. Results are presented as means  $\pm$  S.E.M. (n=3). Statistical analysis was performed by Student' *t*-test, **P* < 0.05.



**Fig. S3.** Dietary ZnO NPs and ZnSO₄ influenced hepatic mitochondrial structure. (A) Representative hepatic TEM images. DC, disrupted cristae. LD, lipid droplet. mito, mitochondria. N, nucleus. SM, smaller size. va, vacuolation; (B) Semi-quantitative of mitochondrial-encoded gene *atp8*; (C) Relative level of mitochondrial copy number. Results are presented as means  $\pm$  S.E.M. (n=3). Statistical analysis was performed by Student' *t*-test, **P* < 0.05.



Fig. S4. Effects of Fer-1 concentration on the viability of L8824 cells. Results are presented as means  $\pm$  S.E.M. (n $\geq$ 3). Statistical analysis was performed by Student' *t*-test, **P* < 0.05.



Fig. S5. Effects of ZnO NPs and ZnSO₄ exposure on the viability of L8824 cells.



Fig. S6. Effects of ZnO NPs and ZnSO₄ on the mRNA expression of hepatic HDACs family genes. Results are presented as means  $\pm$  S.E.M. (n $\geq$ 3). Statistical analysis was performed by Student' *t*-test, **P* < 0.05.

![](_page_16_Figure_0.jpeg)

**Fig. S7.** The effect of si-*hdac8* and si-*hdac6* on the expression of HDAC8 and HDAC6, respectively. (A) Western blot and statistical analysis of HDAC8. L8824 cells were treated with or without si-*hdac8* for 48 h; (B) Western blot and statistical analysis of HDAC6, L8824 cells were treated with or without si-*hdac6* for 48 h; (C) The *hdac8* mRNA expression. L8824 cells were treated with ZnO NPs and/or si-*hdac8* for 48 h; (D) The *hdac6* mRNA expression. L8824 cells were treated with ZnO NPs and/or si-*hdac6* for 48 h; (D) The *hdac6* mRNA expression. L8824 cells were treated means  $\pm$  S.E.M. (n $\geq$ 3 independent biological replicates). Statistical analysis was performed by Student' *t*-test, **P* < 0.05.