Catalytic activity of Cu-cysteine coated on Ti₃C₂MXene toward peroxymonosulfate activation for carbamazepine degradation

Pascaline Sanga,^{a,b} Haitham Saad Al-mashriqi,^{a,b} Jing Xiao,^{a,b}, Jia Chen ^{a*}and Hongdeng Qiu ^{a,b, c*}

^a CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

^b University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, China.

^c Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

* Corresponding e-mail: jiachen@licp.cas.cn (J. Chen), hdqiu@licp.cas.cn (H. Qiu).

Fig S1: Degradation efficiency of various pharmaceutical pollutants.

Fig S2. FESEM of the prepared a) Co-cy/MXene, b) Fe-cy/MXene, and c) Mn-cy/MXene.

Fig. S3. Removal efficiency of CBZ with different transition metal-cy/MXene catalysts. Reaction conditions: [CBZ] = 10 mg/L, [PMS] =0.12 g/L, catalyst = 0.2 g/L, pH 7.0.

Fig S4. TEM of CCM after four reuse cycles.

Table S1. HPLC conditions for different pollutants

Compounds	Mobile phase	Flow rate (mL/min)	Wavelength (nm)	
Carbamazepine	Acetonitrile:60%	1	286	
-	Water: 40%			
Ibuprofen	Acetonitrile: 40%	0.5	222	
	0.1% Acetic acid: 60%			
Sulfamethoxazole	Methanol: 70%	1	264	
	0.2% Acetic acid: 30%			
Ciprofloxacin	Acetonitrile:40%	1	275	
	Water: 60%	1		

	CBZ	Degradation	Time	Catalyst	PMS	pН	Reference
		efficiency	(min)	dosage	dosage		
CuO/MXene	10 mg/L	95.88%	20	0.6 g/L	2 mM	7	[1]
CZIF	5 ppm	96.8%	25	0.05 g/L	0.4 mM	5.8	[2]
Co-CA	20 mg/L	95.3%	20	0.1 g/L	0.3 g/L	6.38	[3]
CoSBC	20 mg/L	95.73%	20	0.10 g/L	0.30 g/L	6.38	[4]
AgBr/BiOBr/Fe ₃ O ₄	10 mg/L	96.84%	30	0.30 g/L	1.0 mM		[5]
NMS	5 mg/L	70%	120	0.4 g/L	0.3 g/L	6.5	[6]
FeMATNPc-INA	2.5×10 ⁻⁵ mol/L	98%	40	1 g/L	1.5 mmol/L	7	[7]
ССМ	10 mg/l	98.6%	20	0.2 g/L	0.2 mM (0.12g/L)	7	This work

Table S2. Comparison of CCM catalyst to activate PMS with other catalysts for the degradation of CBZ.

CZIF: ZIF-derived Co, N-doped graphitic carbon

Co-CA: Cobalt-embedded carbon aerogels

CoSBC: CoSx containing biochar

NMS: Natural manganese sand enriched with oxygen vacancies

FeMATNPc-INA: Monoaminotrinitro iron phthalocyanine connect with isonicotinic acid

CCM: Cu-cysteine/Ti₃C₂MXene

References

[1] P. Yang, S. Li, L. Xiaofu, A. Xiaojing, D. Liu, W. Huang, Singlet oxygen-dominated by CuO/MXene nanocomposites activation of peroxymonosulfate for efficient decontamination of carbamazepine under high salinity conditions: Performance and singlet oxygen evolution mechanism, Sep. Purif. Technol. 285 (2022)120288. https://doi.org/10.1016/j.seppur.2021.120288.

[2] J. Zhang, J. Wei, Z. Xiong, Z. Guo, D. Xu, B. Lai, Coupled adsorption and non-radical dominated mechanisms in Co, N-doped graphite via peroxymonosulfate activation for efficiently degradation of carbamazepine, Sep. Purif. Technol. 309 (2023) 122981. https://doi.org/10.1016/j.seppur.2022.122981.

[3] C. Yao, Y. Qin, Y. Li, Q. An, Z. Xiao, C. Wang, S. Zhai, Activation of peroxymonosulfate by cobalt-embedded carbon aerogels: Preparation and singlet oxygen-dominated catalytic degradation insight, Sep. Purif. Technol. 307 (2023) 122728. https://doi.org/10.1016/j.seppur.2022.122728.

[4] X. Peng, Y. Li, K. Zhu, Q. An, J. Hao, Z. Xiao, X. Dong, S. Zhai, CoS produced in Porphyra biochar by exogenous Co and endogenous S doping to enhance peroxymonosulfate activation for carbamazepine degradation, J. Environ. Chem. Eng. 11(5) (2023) 110988. https://doi.org/10.1016/j.jece.2023.110988.

[5] Y. Tao, G. Fan, X. Li, X. Cao, B. Du, H. Li, J. Luo, Z. Hong, K.-Q. Xu, Recyclable magnetic AgBr/BiOBr/Fe₃O₄ photocatalytic activation peroxymonosulfate for carbamazepine degradation: Synergistic effect and mechanism, Sep. Purif. Technol. 330 (2024) 125392. https://doi.org/10.1016/j.seppur.2023.125392.

[6] W. Liu, Y. Yang, Y. Li, Y. Zhou, C. Wang, Y. Zhou, J. Shang, X. Cheng, Oxygen vacancies enhanced natural manganese sand activation by PMS for CBZ degradation: Intermediate toxicity and DFT calculations, Sep. Purif. Technol. 329 (2024) 125015. https://doi.org/10.1016/j.seppur.2023.125015.

[7] Z. Zhu, W. Qian, Z. Shang, X. Ma, Z. Wang, W. Lu, W. Chen, Efficient elimination of carbamazepine using polyacrylonitrile-supported pyridine bridged iron phthalocyanine nanofibers by activating peroxymonosulfate in dark condition, J. Environ. Sci. 137 (2024) 224-236. <u>https://doi.org/10.1016/j.jes.2022.10.046</u>.