Supplementary Document for Impact of Size and UV-ageing of Polystyrene Nanoparticles on Copper(II) Adsorption: Kinetics and Isotherms in Aquatic Environments

Shadab Soheilian^a, Beth Jordan^a, Fiona Hatton^a, Eugenie Hunsicker^b, and Zhaoxia Zhou^a

^aDepartment of Materials, Loughborough University, Loughborough, UK ^bDepartment of Mathematical Sciences, Loughborough University, Loughborough, UK

Components	Conc. (g/L)
NaCl	24.54
$MgCl_2 \cdot 6H_2O$	11.11
Na_2SO_4	4.09
$CaCl_2$	1.53
KCl	0.69
$NaHCO_3$	0.20
$\mathrm{K}Br$	0.10
SrCl_2	0.04
H_3BO_3	0.027
NaF	0.003

 Table S1 Concentrations of chemical components of artificial seawater.

 ${\bf Table \ S2} \ {\rm Molarity \ of \ each \ ions \ for \ components \ of \ artificial \ seawater.}$

Components	Molarity (M)
Na^+	0.4799
Cl^-	0.6908
Mg^{2+}	0.1167
SO_4^{2-}	0.0288
Ca^{2+}	0.0138
K^+	0.0101
HCO_3^-	0.00238
BO_{3}^{3-}	0.00043
Br^-	0.00084
Sr^{2+}	0.000252
F^-	0.000071

Equations used for Calculation of Conversion Rate for Synthesized PS-NPs:

$$Conversion\ rate(\%) = \left(\frac{Measured\ solid\ content\ (\%)}{Theoritical\ solid\ content\ (\%)}\right) \times 100$$
(S1)

where theoretical solid content can be expressed as below:

$$Theoretical \ solid \ (\%) \ at \ 100\% \ monomer \ conversion = \left(\frac{Total \ mass \ of \ reagents \ (g)}{Total \ mass \ of \ reagents \ and \ solvent \ (g)}\right) \times 100 \ (S2)$$

Linear forms of Adsorption Isotherm Models: Linear from of Langmuir model can be expressed as:

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{K_l q_m} \tag{S3}$$

where q_m and K_l can be calculated from the slope, $1/q_m$, and the intercept, $1/K_lq_m$, of the fitted line.

Linear from of Freundlich model can be written as below:

$$logq_e = logK_f + \frac{1}{n}logC_e \tag{S4}$$

where n and K_f can be determined from the slop, 1/n, and the intercept, $logK_f$.

Fig. S1 UV-Vis spectra before and after removal of PS-NPs from the suspension using centrifugation.

Fig. S2 UV-Vis calibration curve for known concentrations of Cu^{2+} ions with maximum absorbance at $\lambda=800$ nm.

Calculation of the adsorbed mass of Cu^{2+} ions, q_t (mg/g), by PS-NPs:

$$q_t = \frac{C_0 - C_t}{m} \times V \tag{S5}$$

where C_0 and C_t are initial and time t metal ion concentrations (mg/L), respectively. V is the volume of the solution in litre (L) and m is the mass of the adsorbent, PS-NPs, in grams (g).

Entry No.	Methanol (g)	$\operatorname{Water}(\mathbf{g})$	$\mathbf{Styrene}(\mathbf{g})$	$\mathbf{KPS}(\mathbf{g})$	${f Average}\ {f diameter(nm)}$	Polydispersity Index	${f Conversion} \ {f Rate}(\%)$
1	28	2	1	0.0075	760	0.122	96
2	28	2	1	0.007	520	0.044	96
3	27	3	1	0.0075	597	0.134	90
4	21	9	1	0.007	360	0.002	95
5	20	10	1	0.007	320	0.006	94
6	16	14	1	0.007	260	0.009	96
7	10	20	1	0.0074	370	0.004	95
8	10	20	1	0.002	267	0.002	96
9	10	20.5	0.5	0.002	130	0.003	94
10	4	26.5	0.5	0.002	120	0.157	74

Table S3 The value of reactants in synthesizing different PS particle sizes.

Fig. S3 FTIR spectra of (a) PS-130, (b) PS-260 and (c) PS-520.

Fig. S4 (a-c) C 1s and (d-f) O 1s XPS spectra of PS control samples.

Fig. S5 Adsorption kinetics of Cu²⁺, where q_t was calculated based on specific surface area of PS-130 (\blacktriangle), PS-260 (\blacksquare), and PS-520 (\bullet) in (**a**,**b**) DI water and (**c**,**d**) seawater, with PFO (dotted line) and PSO (solid line) model fittings.

Table	S4 Fitting	; parameters of	f adsorption	kinetics of	of Cu^{2+}	, where q_t	normalised	by the	corresponding	surface	area	of
the PS	-NPs in eac	ch condition.										

					PFO			\mathbf{PSO}	
	Medium	Size (nm)	$q_{e,exp_{SSA}}\ ({ m mg/m^2})$	$\frac{q_{e1,Cal_{SSA}}}{(\mathrm{mg/m}^2)}$	K_1	R_1^2	$\frac{q_{e2,Cal_{SSA}}}{(\mathrm{mg}/\mathrm{m}^2)}$	K_2	$R_2^{\ 2}$
Original PS	DI water	130	0.141	0.136	2.947	0.982	0.144	31.526	0.999
		260	0.199	0.190	1.232	0.971	0.212	7.858	0.995
		520	0.095	0.106	0.273	0.985	0.148	1.465	0.979
	Seawater	130	0.186	0.176	2.674	0.986	0.188	21.391	0.997
		260	0.087	0.084	2.401	0.984	0.090	40.362	0.985
		520	0.080	0.076	1.156	0.938	0.085	18.332	0.970
70		130	0.195	0.185	1.302	0.952	0.207	8.187	0.977
-aged PS	DI water	260	0.314	0.303	2.097	0.978	0.327	9.261	0.994
		520	0.184	0.181	0.974	0.982	0.206	5.823	0.988
		130	0.280	0.272	4.800	0.990	0.283	30.725	0.999
Ŋ	Seawater	260	0.234	0.226	3.300	0.960	0.246	27.463	0.989
		520	0.190	0.182	1.672	0.989	0.192	9.956	0.999

Fig. S6 The kinetics of Cu^{2+} adsorption by original and UV-aged PS-NPs in DI water and seawater at different temperatures (290 K \blacktriangle , 300 K \blacksquare , 310 K \bullet) including their PSO model fittings.

	Particle 290 K				300 K				310 K					
	Medium	size(nm)	$q_{e,exp}$	$q_{e2,Cal}$	K_2	$R_2{}^2$	$q_{e,exp}$	$q_{e2,Cal}$	K_2	R_2^2	$q_{e,exp}$	$q_{e2,Cal}$	K_2	$R_2{}^2$
Original PS		130	6.20	6.36	0.717	0.999	5.12	5.19	1.154	0.998	4.07	4.15	1.702	0.991
	DI water	260	4.41	4.67	0.357	0.995	4.01	4.11	0.499	0.982	2.44	2.62	0.639	0.990
		520	1.05	1.63	0.133	0.979	0.70	1.10	0.154	0.977	0.44	0.58	0.231	0.973
		130	1.54	1.63	2.474	0.996	1.37	1.41	3.745	0.997	1.10	1.11	4.403	0.993
	Seawater	260	1.02	1.05	3.458	0.986	0.82	0.85	4.298	0.989	0.66	0.68	5.002	0.984
01		520	0.50	0.54	2.312	0.972	0.41	0.48	3.312	0.971	0.25	0.27	3.938	0.910
		130	3.83	3.99	0.418	0.977	2.76	2.96	0.661	0.990	2.01	2.19	1.104	0.981
VU	DI water	260	5.58	5.83	0.522	0.994	4.52	4.50	0.877	0.940	3.84	3.93	1.541	0.995
-ae		520	1.93	2.15	0.279	0.991	1.05	1.31	0.387	0.966	0.90	1.13	0.452	0.925
ŗed		130	2.42	2.45	3.542	0.999	2.05	2.06	6.471	0.995	1.49	1.51	6.951	0.996
P	Seawater	260	2.19	2.25	2.347	0.999	1.93	1.96	3.504	0.997	1.51	1.54	4.447	0.995
\mathbf{v}		520	1.49	1.57	1.560	0.989	0.88	0.90	2.393	0.966	0.64	0.66	2.646	0.969

Table S5 Pseudo-second order (PSO) fitting parameters of adsorption kinetics of Cu^{2+} ions at different temperatures.

Fig. S7 Arrhenius plots of Cu²⁺ adsorption for original and UV-aged PS-130 (\blacktriangle), PS-260 (\blacksquare) and PS-520 (\bullet) in DI water and seawater.

20.959
0.959
11.368
0.979
25.089
0.998
20.631
0.917

Table S6 Activation energy (E_a) of Cu²⁺ adsorption and corresponding \mathbb{R}^2 values.