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Materials

All solvents and chemicals were used as purchased, unless otherwise noted. The deionized water 

was produced in the laboratory. Dealkali lignin, dicyandiamide, were obtained from Shanghai 

Yien Chemical Technology Co., Ltd. Peroxymonosulfate (PMS) and L-histidine were purchased 

from Anhui Zesheng Technology Co., Ltd. Sulfamethoxazole (SMX), t-butanol (TBA), 

sulfadiazine and 3-aminophenol were obtained from Shanghai Aladdin Biochemical Co., Ltd. 

Bisphenol A was purchased from Shanghai Xushuo Biotechnology Co., Ltd. Ciprofloxacin 

was bought from Tianjin Xiensi Biochemical Technology Co., Ltd. Tetracycline, melamine 

and urea were obtained from Shanghai Macklin Biochemical Co., Ltd. Trichloromethane 

(CHCl3), ethanol (EtOH) was purchased from Shanghai Hushi Laboratory Equipment Co., 

Ltd. Sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O, AR, 99%, Sinopharm Chemical 

Reagent Co., Ltd.), sodium bicarbonate (NaHCO3, AR, 99.8%, Shanghai Macklin Biochemical 

Co., Ltd.), Ltd.), sodium chloride (NaCl, AR, Sinopharm Chemical Reagent Co., Ltd.), potassium 

sulfate (K2SO4, AR, 99% Shanghai Macklin Biochemical Co., Ltd.), sodium nitrate (NaNO3, AR, 

99%, Tianjin Hengxing Chemical Reagent Manufacturing Co.), and humic acid (HA, 70%, 

Shanghai Aladdin BioChemical Technology Co., Ltd.) were utilized as received. 

Instruments

UV-vis spectra were conducted on Metash UV-8000S. Powder X-ray diffraction (PXRD) analyses 

were carried out on an Germany-Bruke D8 Advance. Fourier-Transform Infrared Spectrometer 

(FTIR) spectra of the catalysts were performed on a Thermo Nicolet iS5. Raman was recorded on 

HORIBA-EVA. N2 adsorption/desorption isotherms of as-obtained materials were carried out on 

ASAP-2460. The morphologies of the catalysts were observed by scanning transmission electron 

microscopy (JEOL-JEM 2100 F) and scanning electron microscopy (Sigma 300). Energy 

Dispersive Spectrometer (EDS) mapping was conducted with a microscope (Oxford 80T) operated 

at 200 kV. X-ray photoelectron microscopy (XPS) spectra were measured on a Thermo Scientific 
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ESCALAB 250Xi using a monochromate Al X-ray resource at a C1s 284.8 eV reference. Electron 

paramagnetic resonance (EPR) spectroscopy was performed on a Germany-Bruke-A300. High 

resolution mass spectrometry (HRMS) was collected using Aglient 6540 TOF.

Fig. S1. (a) N2 adsorption-desorption isotherms and (b) corresponding Barrett-Joyner-

Halenda curve of the as-obtained catalysts.

Fig. S2. (a) SMX degradation catalyzed by as-obtained catalysts, (b) SMX absorption effect of 

NPCN and oxidation effect of PMS alone. Standard conditions: 50 mL SMX (20 mg/L), 25 mg 

Catalyst, and 25 mg PMS at 30 ℃.
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Fig. S3. Sum EDS spectrum (up) and corresponding elemental proportions (down) of NPCN.

Fig. S4. Recycling test for the NPCN catalyst in SMX degradation.
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Fig. S5. SEM image of the NPCN after 5 times recycling.

Fig. S6. PXRD of NPCN before and after 5 times recycling.
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Fig. S7. Electronic quenching experiment in the NPCN/PMS system using AgNO3 as electron 
scavenger.

Fig. S8. Negative HR-MS analysis of the final productions catalyzed by the NPCN/PMS system.
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Fig. S9. The possible degradation pathways of SMX in the NPCN/PMS system.
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Fig. S10. Phenotype of representative wheat seeds cultivated by (a) SMX aqueous solution, 
(b) degraded SMX aqueous solution, and (c) deionized water at three days.

Table S1. Brunauer-Emmett-Teller (BET) results of the as-prepared samples.

Samples Surface Area (m2g-1) Pore Volume (cm3g-1) Pore Size (nm)

HCNs 358.46 0.42 4.63 

NCN-1 16.62 0.06 13.37 

NCN-2

NPCN

6.76

369.92

0.02

0.42

14.60

4.58
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Table S2. Comparison of previous reports on SMX degradation activated by PMS.

Entry Contaminant Catalyst Oxidant
Degradation

efficiency
Time Ref.

1
SMX

(20 mg/L)

NPCN

(0.5 g/L)

PMS

(0.5 g/L)
96.6% 10 min This work

2
SMX

(10 mg/L)

C-N-M

(0.1 g/L)

PMS

(0.5 mM)
95.0% 30 min [S1]

3
SMX

(10 mg/L)

BMNSBC

(0.4 g/L)

PMS

(1 mM)
100% 60 min [S2]

4
SMX

(5 mg/L)

Fe-DA-CN

(50 mg/L)

PMS

(0.5 mM)
99% 30 min [S3]

5
SMX

(20 mg/L)

CoNi-600@NC

(25 mg/L)

PMS

(0.3 mM)
100% 25 min [S4]

6
SMX

(10 mg/L)

CN@FeMn-10-800

(0.15 g/L)

PMS

(0.2 g/L)
91.2% 60 min [S5]

7
SMX

(0.04 mM)

Fe0 @Fe3O4-MC

(0.1 g/L)

PMS

(3 mM)
100% 120 min [S6]

8
SMX

(5 mg/L)

BOSBC

(0.14 g/L)

PMS

(1 mM)
98.6% 60 min [S7]

9
SMX

(10 mg/L)

BNSBC

(0.4 g/L)

PMS

(1 mM)
92.1% 60 min [S8]

10
SMX

(20 mg/L)

CoS/BBC

(0.02 g/L)

PMS

(0.3 g/L)
99.12% 10 min [S9]
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Table S3. Toxicity classification according to the Globally Harmonized System of Classification 

and Labelling of Chemicals (GHS).

Toxicity range (mg L-1) Class

LC50/ChV ≤1 Very toxic

1< LC50 /ChV ≤10 Toxic

10< LC500/ChV ≤100 Harmful

LC50/ ChV >100 Not harmful
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Table S4. Acute and chronic toxicity of SMX and its degraded intermediates to aquatic organisms 

estimated using ECOSAR.

Acute toxicity (mg L-1) Chronic toxicity (mg L-1)

Compound
Fish 

(LC50-96 

h)

Daphind 

(LC50-48 

h)

Green algae 

(LC50-96 h)

Fish 

(ChV)

Daphind 

(ChV)

Green algae 

(ChV)

SMX 267.00 6.43 21.80 5.00 0.068 11.10

P1 1330.00 9.05 39.00 44.00 0.084 35.40

P2 270.00 3.63 13.80 6.59 0.036 9.16

P3
11200.0

0
5220.00 1740.00 868.00 296.00 295.00

P4 1990.00 168.00 274.00 331.00 9.85 70.90

P5 646.00 5.61 23.10 19.20 0.054 18.80

P6 954.00 502.00 272.00 85.20 39.50 60.10
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