Supplementary Information:

High Selectivity of CO₂ Capture with Single- and Double-Walled Carbon Nanotubes

Winarto,^{a,*} Lilis Yuliati,^a Purnami,^a Paul E. Brumby,^b and Kenji Yasuoka^b

 ^a Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, Jl. MT Haryono 167, Malang 65145, Indonesia
^b Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

*E-mail: winarto@ub.ac.id

Figure S1 shows the MD simulation result for a system consisting of (8, 8) SWCNT and a mixture of $N_2 - O_2$ in the reservoir. The mole fraction of the mixture is 0.5. As presented in Figure S1, the number of O_2 molecule in the CNT is higher than that of N_2 molecule. The result indicates that the CNT preferentially adsorbs O_2 instead of N_2 . Using the data after 2 ns, the average mole fraction of O_2 in the CNT is 0.69. This means that the selectivity of $S_{O2/N2}$ is 2.2.

Figure S1 MD simulation with (8, 8) SWCNT and a $N_2 - O_2$ binary mixture in the reservoir. The vertical axis represents the number of molecules (*N*) inside the SWCNT.

Figure S2 shows snapshot of MD simulation for CO_2 – graphene sheets system without CNT with *NVT* constant at 300 K. The reservoir was filled with CO_2 gas molecules at 90 bar or at the density of 0.17 gram/cm³. The CO_2 molecules form solid ice structure at the

graphene sheets as shown in Figure S2-B.

Figure S2 MD simulation of CO₂ – graphene system: (A) Initial condition, the pressure of CO₂ gas in the reservoir is 90 bar, (B) The CO₂ forms solid ice at the graphene sheets.

Figure S3 shows simulation of bulk system of CO_2 gas molecules at 6 bar or at the density of 0.009 gram/cm³. The simulation was performed with *NVT* constant at 300 K. The result indicates that the CO₂ molecules form solid ice structure as shown in Figure S3-B. The decrease of potential energy shown in Figure S4 confirms the phase transition of the CO₂ molecules.

Figure S3 Simulation of CO₂ bulk system: (A) Initial condition, CO₂ gas is at 6 bar, 0.009 gram/cm³, (B) The CO₂ forms solid ice structure.

Figure S4 Potential energy of the CO₂ bulk system. The energy decreases when the CO₂ gas forms solid ice structure.