Unleashing the Power of Cobalt Pyroborate: Superior Performance

in Sulfate Radical Advanced Oxidation Processes

En-Xuan Lin, Fang-Yu Wu, Yu-Lun Zhu, Yu-Rong Chang, Po-Yi Wu, Pei Yuin Keng*

- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- * Corresponding author. Tel.: +886-3-5715131 ext. 33884; fax: +886-3-5722366; e-mail address: keng.py@gapp.nthu.edu.tw (P.Y.K).

Table 1 Comparative analysis of Co_3O_4 heterostructures in previous studies relative to the current work. Abbreviations for organic pollutants: 4-NP signifies 4-nitrophenol; BPA stands for bisphenol-A; PNT represents phenacetin; SDZ denotes sulfadiazine; RhB refers to Rhodamine-B; SMZ is for sulfamethoxazole; SSZ indicates sulfasalazine; CBZ is an abbreviation for carbamazepine; and TC designates tetracycline.

Catalyst	Pollutant	Reaction conditions	Performance	Referenc
				e
Co ₃ O ₄ nanoparticles and N-functionalized	4-NP	[PMS] = 3 mM; catalyst = 0.14 g/L;	100.0% k = 0.137 min ⁻¹	[1]
carbon nanosheet		[4-NP] = 20 ppm;		
frameworks (Co ₃ O ₄ -		time $= 60 \text{ mins}$		
NCNF)				
Ultrafine Co ₃ O ₄	BPA	[PMS] = 0.66 mM;	97%	[2]
incorporated carbon		catalyst = 0.1 g/L ;	$k = 0.45 \text{ min}^{-1}$	
composites (Co ₃ O ₄ /CC)		[BPA] = 10 ppm; time		
		= 10 mins		
Two-dimensional (2D)	BPA	[PMS] = 0.25 mM;	98.0%	[3]
ultrathin perforated		catalyst = 0.05 g/L ;	$k = 0.112 \text{ min}^{-1}$	
Co ₃ O ₄ nanosheet		[SMZ] = 10 ppm;		
		time $= 30 \text{ mins}$		

Co_3O_4 anchored on	PNT	[PMS] = 1.0 mM;	100.0%	[4]
biochar derived from		catalyst = $0.05 \text{ g/L};$	$k = 0.32 \text{ min}^{-1}$	
chitosan		[PNT] = 10 ppm; time		
$(Co_3O_4@BCC)$		= 15 mins		
Co ₃ O ₄ -MnO ₂	SDZ	[PMS] = 1.0 mM;	100.0%	[5]
nanoparticles moored		catalyst = 0.1 g/L ;	$k = 0.482 \text{ min}^{-1}$	
on biochar (Co ₃ O ₄ -		[SDZ] = 25 ppm; time		
MnO ₂ /BC)		= 10 mins		
Cobalt@porous carbon	4-NP	[PMS] = 3.9 mM;	99.5%	[6]
nanosheets		catalyst = $0.16 \text{ g/L}; [4-$	$k = 0.618 \text{ min}^{-1}$	
		NP] = 20 ppm; time =		
		12 mins		
Co-doped g-C ₃ N ₄	RhB	[PMS] = 0.12 mM;	99%	[7]
		catalyst = $0.4 \text{ g/L};$	$k = 0.2208 \text{ min}^{-1}$	
		[RhB] = 10 ppm; time		
		= 25 mins		
$C_3N_5-Co_{0.59}$	SMX	[PMS] = 1.0 mM;	99.57%	[8]
		catalyst = $0.5 \text{ g/L};$	$k = 0.3515 \text{ min}^{-1}$	
		[SMX] = 10 ppm;		
		time = 20 mins		
In situ N-doped carbon-	SMZ,	[PMS] = 0.3 mM;	100% : SSZ,	[5]
coated mulberry-like	SSZ,	catalyst = $0.1 \text{ g/L};$	CBZ	
cobalt manganese oxide	CBZ, etc.	$[pollutant] = 30 \mu M;$	95.4% SMZ	
(HCoMnOx@NC)		time = 30 mins	$k_{SMZ} = 0.0867$	
			$k_{SSZ} = 0.1769$	
			$K_{CBZ} = 0.5069$	
	D1 D			[0]
cobalt sulfide-reduced	RnB	[PMS] = 0.05 mM;	100%	[9]
graphene oxide		catalyst = 0.25 g/L ;	$K = 0.6 / 14 \text{ min}^{-1}$	
nanocomposite (Cos-		$[\text{KnB}] = 30 \mu\text{M}; \text{ time}$		
(UU)	TC 4	$-\delta$ mms [DMS] -1 mM;	05 20/ SMV	Ourwork
Our work $CO_2D_2O_5$	IC, 4-	[PNIS] = 1 Intvi;	95.2% SIVIA	Our work
	INF, SIVIA	Catalyst = 0.12 g/L	$K_{SMX} = 0.092$	
		[SWIX] = 10 ppm	07.0% TC	
		[1C] = 30 ppm $[4 NP] = 40 ppm$	$k_{\rm max} = 0.16 {\rm min^{-1}}$	
			96.8% <u>4</u> .NP	
			$k_{\rm AUD} = 0.12 \rm{min}^{-1}$	
			14NP 0.12 IIIII	

Figure S1. Crystal structure of cobalt pyroborate

Figure S2: BET isotherms using N_2 at 77 K of $Co_2B_2O_5$

The Fourier Transform Infrared (FTIR) spectrum of $Co_2B_2O_5$ is presented (Fig. 4), revealing several characteristic absorption bands associated with cobalt, boron and oxygen. Notably, several peaks have been identified, including the O-H vibration at 3425.88 cm⁻¹, as well as the asymmetric B-O stretching peaks of the three-coordinate boron at 1465.58 cm⁻¹ and 1273.52 cm⁻¹, and of fourcoordinate boron at 1170.05 cm⁻¹ and 1012.5 cm⁻¹.[10,11] The symmetric B-O stretching vibration of the four-coordinate boron is evident at 906 cm⁻¹ and 820.88 cm⁻¹, while the symmetric stretching vibrations of the four-coordinate boron group emerged at 872 cm⁻¹.[10,11] Additionally, the absorbance band at 768 cm⁻¹ can be assigned to the oxygen bridge of one tetrahedral and one tetragonal boron group.[10,11] The Co-O bond is represented by the absorption peaks at 595.50 cm⁻¹ and 662.50 cm⁻¹, and the absorbance band at 697.03 cm⁻¹ is due to the O-B-O bonding.[12– 15] Our FTIR results is commensurate with the XPS and XRD analyses, which confirms the structural characteristic of $Co_2B_2O_5$.

Figure S3: FTIR spectrum of Co₂B₂O₅ nanoparticle

ICP-MS

The ICP-MS analysis of the $Co_2B_2O_5$ revealed the elemental composition of Co:B weight ratio to 0.529:0.151, which is commensurate with the theoretical value of 0.536:0.1(Table S1). The higher proportion of boron than the ideal value may be due to the residual portion of boric

acid during synthesis.

Figure S3: Kinetic plot of trapping experiment using CoO as a catalyst in SR-AOPs. Reaction conditions: $[4-NP]_0 = 40$ ppm; [catalyst] = 125 mg/L; [PMS] = 1 mM; [trapping agent] = 1 mM. **Table S2** ICP-MS result of the pristine Co₂B₂O₅ nanoparticles and the solution after a standard SR-AOPs degradation reaction using Co₂B₂O₅ as catalyst

Element/Concentration	Co	В
Sample		
$Co_2B_2O_5$ (ppm)	71.50	20.71
Weight percent in catalyst (%)	52.9	15.1
Co and B leached in the solution (ppm)	21.22	7.715

Table S3 Relative atomic percentage of Co²⁺ and Co³⁺ in pristine versus spent Co₂B₂O₅

Elements in different chemical states	Relative contents (at. %)	
	Pristine	Spent
Co ²⁺	39.8	61.3
C0 ³⁺	60.2	38.7

References

- [1] G. Yi, M. Ye, J. Wu, Y. Wang, Y. Long, G. Fan, Facile chemical blowing synthesis of interconnected N-doped carbon nanosheets coupled with Co3O4 nanoparticles as superior peroxymonosulfate activators for p-nitrophenol destruction: Mechanisms and degradation pathways, Appl. Surf. Sci. 593 (2022) 153244. https://doi.org/10.1016/j.apsusc.2022.153244.
- [2] R. Luo, C. Liu, J. Li, C. Wang, X. Sun, J. Shen, W. Han, L. Wang, Convenient synthesis and engineering of ultrafine Co3O4-incorporated carbon composite: towards practical application of environmental remediation, J. Mater. Chem. A 6 (2018) 3454–3461. https://doi.org/10.1039/C7TA11052A.
- [3] Q. Wang, Z. Xu, Y. Cao, Y. Chen, X. Du, Y. Yang, Z. Wang, Two-dimensional ultrathin perforated Co3O4 nanosheets enhanced PMS-Activated selective oxidation of organic micropollutants in environmental remediation, Chem. Eng. J. 427 (2022) 131953. https://doi.org/10.1016/j.cej.2021.131953.
- [4] J. Zhou, X. Yang, Q. Wei, Y. Lan, J. Guo, Co3O4 anchored on biochar derived from chitosan (Co3O4@BCC) as a catalyst to efficiently activate peroxymonosulfate (PMS) for degradation of phenacetin, J. Environ. Manage. 327 (2023) 116895. https://doi.org/10.1016/j.jenvman.2022.116895.
- [5] A. Wang, Y. Chen, Z. Zheng, H. Wang, X. Li, Z. Yang, R. Qiu, K. Yan, In situ N-doped carbon-coated mulberry-like cobalt manganese oxide boosting for visible light driving photocatalytic degradation of pharmaceutical pollutants, Chem. Eng. J. 411 (2021) 128497. https://doi.org/10.1016/j.cej.2021.128497.
- [6] L. Hu, X. Liu, A. Guo, J. Wu, Y. Wang, Y. Long, G. Fan, Cobalt with porous carbon architecture: Towards of 4-nitrophenol degradation and reduction, Sep. Purif. Technol. 288 (2022) 120595. https://doi.org/10.1016/j.seppur.2022.120595.
- [7] L. Wang, X. Guo, Y. Chen, S. Ai, H. Ding, Cobalt-doped g-C3N4 as a heterogeneous catalyst for photo-assisted activation of peroxymonosulfate for the degradation of organic contaminants, Appl. Surf. Sci. 467–468 (2019) 954–962. https://doi.org/10.1016/j.apsusc.2018.10.262.
- [8] P. He, C. Gu, B. Tang, Y. Zhou, M. Gan, J. Zhu, Expeditious degradation of SMX by high-valent cobalt-oxo species derived from cobalt-doped C3N5-activated peroxymonosulfate with the assistance of visible light, Sep. Purif. Technol. 301 (2022) 122009. https://doi.org/10.1016/j.seppur.2022.122009.
- [9] L. Amirache, F. Barka-Bouaifel, P. Borthakur, M.R. Das, H. Ahouari, H. Vezin, A. Barras,

B. Ouddane, S. Szunerits, R. Boukherroub, Cobalt sulfide-reduced graphene oxide: An efficient catalyst for the degradation of rhodamine B and pentachlorophenol using peroxymonosulfate, J. Environ. Chem. Eng. 9 (2021) 106018. https://doi.org/10.1016/j.jece.2021.106018.

- [10] A.M. Abdelghany, F.H. ElBatal, H.A. ElBatal, F.M. EzzElDin, Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation-a comparative study, J. Mol. Struct. 1074 (2014) 503–510. https://doi.org/10.1016/j.molstruc.2014.06.011.
- [11] A.S. Kipcak, M. Yildirim, S. Aydin Yuksel, E. Moroydor Derun, S. Piskin, The Synthesis and Physical Properties of Magnesium Borate Mineral of Admontite Synthesized from Sodium Borates, Adv. Mater. Sci. Eng. 2014 (2014) 1–9. https://doi.org/10.1155/2014/819745.
- [12] O.Y. Gumus, H.I. Unal, O. Erol, B. Sari, Synthesis, characterization, and colloidal properties of polythiophene/borax conducting composite, Polym. Compos. 32 (2011) 418– 426. https://doi.org/10.1002/pc.21057.
- [13] H.T. Jang, E.M. Jung, S.H. Park, P. Hemalatha, Synthesis and Characterization of CoO-ZnO Catalyst System for Selective CO Oxidation, Int. J. Control Autom. 6 (2013) 31–40. https://doi.org/10.14257/ijca.2013.6.6.04.
- [14] S.Z. Mohammadi, B. Lashkari, A. Khosravan, Green synthesis of Co3O4 nanoparticles by using walnut green skin extract as a reducing agent by using response surface methodology, Surf. Interfaces 23 (2021) 100970. https://doi.org/10.1016/j.surfin.2021.100970.
- [15] V. Sankar Devi, M. Athika, E. Duraisamy, A. Prasath, A. Selva Sharma, P. Elumalai, Facile sol-gel derived nanostructured spinel Co3O4 as electrode material for high-performance supercapattery and lithium-ion storage, J. Energy Storage 25 (2019) 100815. https://doi.org/10.1016/j.est.2019.100815.