Supporting Information

S1. Supplemental Methods

S1.1 Determination of phytohormones

Fresh rice leaves (0.20 g) were immersed in 2 mL pre-chilled 80% methanol solution and extracted at 4°C in a refrigerator for 12 h. After centrifugation at 4500 rpm for 10 mins at 4°C, the supernatant was collected and filtered through a 0.22 μ m nylon membrane. The phytohormone content in the leaves was determined using HPLC-DAD method (Agilent 1260, USA). A ZORBAX SB-C18 chromatographic column (4.6 mm × 150 mm, 5 μ m) was employed with a mobile phase of methanol: water: acetic acid = 45:50:5. The elution was performed isocratically with an injection volume of 10 μ L, a flow rate of 1 mL·min⁻¹, and a column temperature of 30°C. Detection of endogenous hormone content changes in leaves was carried out at a wavelength of 254 nm.

S2. Results

S2.1 Effect of PBCDs on phytohormones

Under Cd-0 treatment, different concentrations of PBCDs can increase the levels of GA3, 6-BA, and IAA, with the exception of ABA (Fig. S1). Notably, the most significant increases in GA3 and IAA were observed at a spraying concentration of 250 mg \cdot L⁻¹, showing increments of 46.11% and 27.62%, respectively. 6-BA reached its highest increase under the PS500 treatment, with a rise of 15.36%. Typically associated with plant growth inhibition, ABA exhibited an exceptional increase of 4.25% under the PS1000 treatment. Generally, ABA showed a decreasing trend across other treatments, indicating that foliar application of PBCDs did not induce significant stress responses.

Under Cd-5 stress, different endogenous hormones play critical roles in rice plants, the foliar application of various concentrations of PBCDs led to an upregulation of GA3, 6-BA, IAA, and ABA compared to the control group. GA3 levels increased by 18.69% to 74.31% in many treatments (Fig. S1A), except for the PS50 treatment, where no significant was observed compared to the control. 6-BA, which plays a crucial role in regulating plant growth and development, increased in rice leaves under Cd stress with appropriate concentrations of PBCDs. Compared to PS0, the concentration of 6-BA significantly increased by $1.82\% \sim 9.36\%$ under the PS50, PS100, and PS500 treatments. Conversely, the PS1000 and PS250 treatments exhibited decreases of 6.04% and 1.66%, possibly due to variations in leaves Cd content. The trend of IAA changes largely mirrored that of gibberellin. After different PBCDs treatments, IAA levels increased by $49.24\% \sim 128.98\%$ (Fig. S1C). ABA,

plays a crucial role in the response to Cd stress, it was found that ABA decreased by $4.59\% \sim 8.23\%$ under the PS50, PS250, and PS1000 treatments, while the PS100 and PS500 treatments led to increases of 7.83% and 1.58%, respectively (Fig. S1D). Overall, our results demonstrate that PBCDs can modulate defense-related phytohormone to mitigate Cd toxicity.

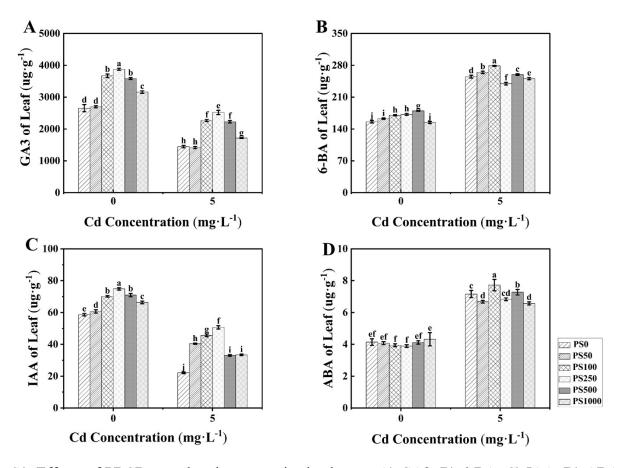


Fig. S1. Effects of PBCDs on phytohormones in rice leaves. A) GA3, B) 6-BA, C) IAA, D) ABA. Bars represent standard deviation (\pm SD) of the means (n = 3). Treatments marked with different letters are significantly different at P < 0.05.

treatment (cm)								
PBCDs Concentration (mg·L ⁻¹)	0	50	100	250	500	1000		
Shoot length	$65.59 \pm 1.15a$	$64.68\pm2.17a$	$65.49\pm2.13a$	$64.32\pm0.46a$	$63.26\pm0.42ab$	$59.98 \pm 0.76 b$		
Root length	$25.40\pm0.10 ab$	$26.84 \pm 1.29a$	$22.72\pm1.27b$	$23.09\pm0.76ab$	$23.61 \pm 1.73 ab$	$24.20 \pm 1.82 ab$		

Table S1 The influence of PBCDs on the length of shoots and roots in rice under Cd-0

Note: Bars represent standard deviation (\pm SD) of the means (n = 3). Treatments marked with different letters are significantly different at *P* < 0.05.

treatment (cm)								
PBCDs Concentration (mg·L ⁻¹)	0	50	100	250	500	1000		
Shoot length	$43.30 \pm 1.55 a$	$45.10\pm0.80a$	$45.38 \pm 1.00a$	$45.55 \pm 1.80a$	$44.87 \pm 1.33 a$	$45.09 \pm 1.01 a$		
Root length	$16.61 \pm 1.06 \text{c}$	$19.03 \pm 0.62 abc$	$21.67\pm2.49ab$	$21.79 \pm 1.43 ab$	$22.28 \pm 1.21a$	18.41 ± 1.38 bc		

Table S2 The influence of PBCDs on the length of shoots and roots in rice under Cd-5 treatment (cm)

Note: Bars represent standard deviation (\pm SD) of the means (n = 3). Treatments marked with different letters are significantly different at *P* < 0.05.

Table S3 The influence of PBCDs on organic acid content in rice roots under Cd-0 treatment

			$(\mu g \cdot g^{-1})$			
PBCDs Concentration (mg·L ⁻¹)	0	50	100	250	500	1000
OA	943.77 ± 142.61a	752.11 ± 76.19ab	$468.56\pm229.45b$	$102.33\pm81.10c$	$552.92\pm53.20b$	$523.15\pm65.85b$
TA	4423.28 ± 319.55a	$4370.78 \pm 566.90 a$	$4055.50 \pm 545.71 a$	$3603.90 \pm 352.63a$	$2452.33 \pm 288.68b$	$844.35\pm237.96c$
CA	1539.04 ± 206.31a	1374.88 ± 35.51a	1322.72 ± 316.15a	$1321.20 \pm 61.98a$	$326.36 \pm 102.98 b$	1487.78 ± 105.49
FA	$189.70\pm29.58b$	$210.96\pm 6.96b$	$193.68\pm7.43b$	$253.13\pm15.49a$	$129.33\pm6.83c$	$190.56\pm12.52b$
SA	$549.32\pm76.31b$	$690.60\pm57.94a$	$497.53\pm59.08b$	$704.55\pm41.81a$	$324.12\pm7.13c$	$487.18\pm 66.86b$
AA	$383.62\pm37.86bc$	$568.52\pm31.15b$	$585.19\pm 62.40b$	$513.63\pm 63.00b$	$848.06 \pm 119.29 a$	$279.13\pm139.12\text{c}$
PA	$1061.69\pm54.84b$	$1179.69 \pm 159.29 b$	$683.13\pm97.40c$	1578.28 ± 196.11a	$397.92\pm75.08c$	$691.65 \pm 132.01 \text{c}$

Note: OA (Oxalic Acid), TA (Tartaric Acid), CA (Citric Acid), FA (Fumaric Acid), SA (Succinic Acid), AA (Acetic Acid), PA (Propionic Acid). Bars represent standard deviation (\pm SD) of the means (n = 3). Treatments marked with different letters are significantly different at P < 0.05.

Table S4 The influence of PBCDs on organic acid content in rice roots under Cd-5 treatment

			$(\mu g \cdot g^{-1})$			
PBCDs Concentration (mg·L ⁻¹)	0	50	100	250	500	1000
OA	1387.76 ± 118.99bc	$1664.12 \pm 153.14ab$	$1806.87 \pm 130.37 a$	$1290.89 \pm 132.75 c$	$1484.54\pm244.98abc$	1493.28 ± 65.57abc
TA	$6623.04 \pm 966.46a$	$6732.77 \pm 1110.49a$	$7718.29 \pm 934.98a$	$6565.71 \pm 1408.01 a$	$8379.65 \pm 1257.67a$	$6403.73 \pm 1151.78a$
CA	$1377.33\pm107.67\texttt{c}$	$2141.38 \pm 392.48b$	$1547.82 \pm 120.81 \text{c}$	$2690.03 \pm 68.70 a$	$2534.95 \pm 248.67 ab$	$1592.83 \pm 131.84c$
FA	$115.92\pm24.70c$	$263.88\pm 61.94a$	$235.51\pm43.17ab$	$174.02\pm13.05bc$	$207.12\pm35.46ab$	$167.16\pm14.85bc$
SA	$321.45\pm29.97b$	$292.14\pm96.80c$	$264.74\pm 60.29 \texttt{c}$	$341.06\pm22.13bc$	$469.97\pm38.78a$	$442.54\pm32.89ab$
AA	$439.16\pm45.86c$	$926.64\pm97.15ab$	$1159.63 \pm 3657.79a$	$579.19\pm128.52\text{bc}$	$621.37\pm80.62\text{bc}$	$498.04\pm 66.08 \texttt{c}$
РА	$612.89 \pm 109.67 \text{bc}$	$934.43 \pm 149.72a$	$741.81\pm 65.36ab$	$355.46\pm28.43d$	$953.35\pm45.81a$	$466.56\pm121.86cd$

Note: OA (Oxalic Acid), TA (Tartaric Acid), CA (Citric Acid), FA (Fumaric Acid), SA (Succinic Acid), AA (Acetic Acid), PA (Propionic Acid). Bars represent standard deviation (\pm SD) of the means (n = 3). Treatments marked with different letters are significantly different at P < 0.05.

			(µg∙g⁻¹)			
PBCDs Concentration (mg·L ⁻¹)	0	50	100	250	500	1000
GA	$14.10\pm0.68a$	$14.83\pm0.23a$	$18.88 \pm 4.56a$	$13.54\pm0.96a$	$12.47\pm4.62a$	$11.46 \pm 1.24a$
NCGA	$3.84 \pm 1.23 ab$	$3.05\pm2.06ab$	$3.13 \pm 1.21 ab$	$6.23 \pm 1.29a$	$3.29\pm0.37ab$	$2.71\pm0.98b$
p-HBA	$1.82\pm0.38a$	$1.56\pm0.32a$	$1.33\pm0.69a$	$1.37\pm0.55a$	$2.37\pm0.42a$	$2.82 \pm 1.04 a$
VA	$8.17\pm0.59a$	$9.09\pm0.08a$	$7.77\pm0.60a$	$5.85\pm0.97b$	$4.58\pm0.93b$	$4.68 \pm 1.17 b$
SYA	$24.54\pm3.33b$	$30.74\pm3.38a$	$26.38 \pm 1.86 ab$	$18.08\pm2.24\text{c}$	$17.78 \pm 1.30 \texttt{c}$	$17.34 \pm 2.33c$
p-CA	$8.10\pm0.71a$	$4.76\pm0.64b$	$4.77\pm0.92b$	$3.20\pm0.55c$	$2.30\pm0.11\text{c}$	$1.79\pm0.30\text{c}$
FA	$93.55\pm13.36ab$	$112.92\pm8.40a$	$75.07 \pm 11.17 b$	$106.01 \pm 8.09a$	$36.67\pm7.68c$	$78.35\pm 6.49b$
BA	$176.8\pm38.1\text{abc}$	$289.27\pm38.05a$	$170.91 \pm 59.3 \text{bc}$	$263.06\pm75.0ab$	$119.71\pm34.84c$	$118.79\pm27.02c$
CinA	$4.16\pm0.19a$	$4.33\pm4.21a$	$4.07\pm0.17a$	$4.33\pm0.16a$	$4.15\pm0.09a$	$4.03\pm0.16a$

Table S5 The influence of PBCDs on phenolic acid content in rice roots under Cd-0 treatment $(ug \cdot g^{-1})$

Note: GA (Gallic acid), NCGA (Neochlorogenic Acid), p-HBA (p-Hydroxybenzoic acid), SYA (syringic acid), p-CA (p-Coumaric acid), FA (Ferulic acid), BA (Benzoic acid), CinA (Cinnamic acid). Bars represent standard deviation (\pm SD) of the means (n = 3). Treatments marked with different letters are significantly different at P < 0.05.

Table S6 The influence of PBCDs on phenolic acid content in rice roots under Cd-5 treatment $(ug \cdot g^{-1})$

			(µg·g·)			
PBCDs Concentration (mg·L ⁻¹)	0	50	100	250	500	1000
GA	$11.92 \pm 1.40 \text{c}$	$12.49\pm0.44\text{bc}$	$14.87\pm2.00 ab$	$12.55\pm0.79\text{bc}$	$15.43\pm0.86a$	$10.13\pm0.76\text{c}$
NCGA	$11.36\pm1.52c$	$17.78\pm0.13ab$	$19.33 \pm 1.57a$	$15.08 \pm 1.42 bc$	$20.17 \pm 1.18 a$	$15.31 \pm 2.22 bc$
p-HBA	$1.91 \pm 0.39 \text{b}$	$2.35\pm0.45 ab$	$2.57\pm0.17ab$	$2.04\pm0.52b$	$2.00\pm0.21b$	$3.36\pm0.97a$
VA	$8.48\pm0.78\text{c}$	$9.85\pm0.63 abc$	$12.90 \pm 1.23 a$	$12.02\pm2.69ab$	$9.66 \pm 0.70 bc$	$9.27 \pm 1.33 bc$
SYA	$26.56\pm4.21 ab$	$32.02\pm2.96a$	$30.37\pm4.21 ab$	$23.06 \pm 12.25 ab$	$25.10\pm2.45 ab$	$17.02\pm2.47b$
p-CA	$15.77\pm0.88ab$	$15.16 \pm 1.76 ab$	$18.76\pm3.09a$	$15.09 \pm 1.74 c$	$14.07 \pm 1.74 ab$	$10.58\pm2.32b$
FA	$192.0\pm31.51b$	$290.60\pm25.46a$	$313.52\pm30.36a$	$121.31\pm17.83c$	$110.71\pm30.87c$	$61.9\pm16.22c$
BA	$55.51\pm 6.02a$	$72.55\pm2.54a$	$58.46\pm 6.06a$	$32.09\pm5.07b$	$66.13\pm13.21a$	$62.76\pm4.89a$
CinA	$5.67 \pm 1.07 a$	$7.43 \pm 1.10a$	$7.75\pm0.99a$	$7.41\pm0.91a$	$7.12\pm0.19a$	$6.49 \pm 1.60 a$

Note: GA (Gallic acid), PCA (protocatechuic acid), p-HBA (p-Hydroxybenzoic acid), VA (Vanillic Acid), SYA (syringic acid), VAN (Vanillin), p-CA (p-Coumaric acid), FA (Ferulic acid), BA (Benzoic acid), CinA (Cinnamic acid). Bars represent standard deviation (\pm SD) of the means (n = 3). Treatments marked with different letters are significantly different at P < 0.05.