SUPPORTING INFORMATION

Eco-friendly Chitosan Base Chlorantraniliprole Nano-pesticides for

Effective Control of Chilo Suppressalis (Walker) through

Bidirectional Transport

Ao Liang^{†, 1, 2}, Yunzheng Zhang^{†, 1, 2}, Xiang Xu^{†, 3}, Hao Wang^{1, 2}, Changwei Gong^{1, 2}, Jie Hu^{1, 2},

Xiangsong Li^{1, 2}, Jizhi Yang^{1, 2}, Anchun Peng^{1, 2}, and Xuegui Wang^{1, 2, *}

¹College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China

² State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China

³ Plant Protection Station, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu 610041, China

* Corresponding author

Xuegui Wang

E-mail: wangxuegui@sicau.edu.cn (X.G. Wang)

	Gene name	Forward primer	Reverse primer
P450 genes	CYP324A12	CGATGTGGATGCGTGAGATG	CTGTTCCTGAAGGCGTCGAA
	<i>CYP321F3</i>	TTACGTGGTGCAGGGATCAA	AGTGGGGTCATCTTTTGCCT
	CYP9A68	GCATCGTTGGCGCTTTTCTT	TCCGAGAAGTGTTCGATCCG
	CYP6CV5	ACACCAGTGTTTACGACACGA	ATTTGGCGGTCAATGCTCTT
reference genes	EF1	CTGGGTATTGGACAAACTGA	GAGGTTCCTGTGATCATGTT

Table S1. Primers used in qRT-PCR for P450s

Note: The above twelve gene primers were designed using NCBI Primer-BLAST.

[†] This author has an equal contribution and first authorship.

^{*} Corresponding author at: College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China *E-mail address*: wangxuegui@sicau.edu.cn (X.G. Wang).

Fig. S1. FITC-CS/γ-PGA and FITC-CLAP@CS/γ-PGA under body fluorescence microscope (a) open field of FITC-CS/γ-PGA. (b) excitation field of FITC-CS/γ-PGA. (c) Emission spectra of CS/γ-PGA and FITC-CS/γ-PGA under 480 nm excitation wavelengths. (d) open field of FITC-CLAP@CS/γ-PGA. (e) excitation field of FITC-CLAP@CS/γ-PGA.

Fig. S2. (A) Distribution of FITC-CS/γ-PGA in different parts of rice at 72 hours after root treatment.(B) Distribution of FITC-CS/γ-PGA in different parts of rice at 72 hours after leaf treatment.

Fig. S3. (A) Distribution of FITC-CS/γ-PGA in larva (take stem) at 24 hours after feed (Cross section).(B) Distribution of FITC-CS/γ-PGA in the larva (take stem) at 24 hours after feed (Longitudinal section).

Fig. S4. (A) The residual amounts of CLAP in deionized water at 4 °C for both CLAP and CLAP@CS/γ-PGA. (B) The residual amounts of CLAP in deionized water at 25 °C for both CLAP and CLAP@CS/γ-PGA. (C) The residual amounts of CLAP in deionized water at 54 °C for both CLAP and CLAP@CS/γ-PGA. (D) The residual amounts of CLAP in deionized water under UV irradiation for both CLAP and CLAP@CS/γ-PGA. (E) Dispersion of CLAP@CS/γ-PGA in deionized water. (F) Dispersion of CLAP@CS/γ-PGA in methanol. (G) Dispersion of CLAP@CS/γ-PGA in ethanol.

Fig. S5. (A) The residual amounts of CLAP in dechlorinated drinking water at 4 °C for both CLAP and CLAP@CS/γ-PGA. (B) The residual amounts of CLAP in dechlorinated drinking water at 25 °C for both CLAP and CLAP@CS/γ-PGA. (C) The residual amounts of CLAP in dechlorinated drinking water at 4 °C for both CLAP and CLAP@CS/γ-PGA. (D) The residual amounts of CLAP in dechlorinated drinking water under UV irradiation for both CLAP and CLAP@CS/γ-PGA.

Fig. S6. (A) Root length of rice plants 7 days after treatment. (B) Plant height of rice plants 7 days after treatment. (C) Fresh weight of rice plants 7 days after treatment.