Supporting Information

Complete degradation of 2,4-dichlorophenol in sequential sulfidated nanoscale zero-valent iron/peroxydisulfate system: Dechlorination, mineralization and mechanism

Zhoujie Pi^{a, 1*}, Puyu Zhou^{b, c, 1}, Kun Luo^d, Li He^{b, c}, Shengjie Chen^{b, c}, Zhu Wang^{b, c}, Shanshan

Zhang ^{b, c}, Xiaoming Li ^{b, c}, Qi Yang ^{b, c, *}

^a College of Urban and Environmental Sciences, Key Laboratory of urban water safety discharge and resource utilization of Hunan province, Hunan University of Technology, 88 Taishan Road, Zhuzhou,

412007, P.R. China

^b College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China

^c Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education Changsha 410082, P.R. China

^d Department of Biological and environmental engineering, Changsha University, Changsha, 410003,

P.R. China

¹These authors contribute equally to this article

Corresponding author at: College of Urban and Environmental Sciences, Hunan University of Technology, Zhuzhou, Hunan 412007, China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China.

E-mail address: pizhoujie@hut.edu.cn (Zhoujie Pi), yangqi@hnu.edu.cn (Qi Yang)

Phone & Fax: +86-0731-8882-2829

Text S1 GC-MS method

The intermediate product samples of 2,4-DCP degradation process were analyzed by Gas chromatography-mass spectrometry (GC-MS) through liquid-liquid extraction pretreatment. 30 mL of samples and 10 mL of dichloromethane were mixed in a liquid separation funnel, and the pH of the mixed solutions was adjusted to 2.0, 7.0 and 12.0 by H₂SO₄ and HCl, respectively. After three oscillations of extraction, the underlying liquid is collected for subsequent use. The collected solution was evaporated and concentrated to 5 mL and filtered by 0.22 µm organic filter. The obtained solution was diluted and transferred to 2 mL injection bottle for testing. HP5 capillary column (30 m×0.25 mm×0.25 µm) was used for the chromatography. 2 µL of samples was injected within 2 min without diffluent. The scanning mass range was 60-400 amu, and the carrier gas flow rate was 1.0 mL·min⁻¹, and the solvent delay time was 7 min. The heating procedure of column temperature is as follows: Initial temperature 40°C, maintaining for 8 min; The temperature was raised to 260°C at a gradient of 20°C per minute and maintained for 20 min. The inlet temperature is 260°C, the ion source temperature is 230°C, and the electron energy is 70 eV. Due to the different charge-mass ratio of each chemical substance, the time of ion peak is different, and the corresponding chemical substance can be obtained by referring to the database comparison.

Figure S1. The N_2 adsorption-desorption isotherms of nZVI and S-nZVI.

Figure S2. O (1s) high resolution of nZVI (a), S-nZVI (b), S-nZVI after pre-reduction (c), S-nZVI after PDS oxidation (d).

Figure S3. The Zeta potential of S-nZVI.

Figure S4. Residual PDS concentration and Fe(II) concentration after reduction and oxidation under different pH value. (Reaction conditions: S-nZVI dosage= 2.5 g·L⁻¹, [PDS] = 1.8 mM, [2,4-DCP] = $10 \text{ mg} \cdot \text{L}^{-1}$)

Figure S5. The mass spectra of the intermediates of 2,4-DCP.

Figure S6. Degradation pathways of 2,4-DCP in sequential S-nZVI/PDS system.

Fe/S	40	60	80	100
FeCl ₃ ·6H ₂ O	3.3788 g	3.3788 g	3.3788 g	3.3788 g
$Na_2S_2O_4$	0.2720 g	0.1814 g	0.1360 g	0.1088 g
$NaBH_4$	1.8915 g	1.8915 g	1.8915 g	1.8915 g

Table S1. Preparation of S-nZVI with different Fe/S

 Table S2. Water quality parameters of different water bodies.

Types	Milli-Q water	Tap water	Peach lake water
Initial pH	5.83	7.31	7.08
TOC (mg·L ⁻¹)	NA	5.75	19.06
$Cl^{-}(mg \cdot L^{-1})$	NA	13.63	10.91
SO4 ²⁻ (mg·L ⁻¹)	NA	28.47	16.37