Supplementary Information (SI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2024

Supporting information

Highly selective capture of palladium from acidic solution by sulfur-functionalized porous carbon microsphere: Performance and mechanism Mingyue Wang^{a,b}, Ruiwen Liang^{a,b}, Lanchao Kou^{a,b}, Xiukun Cao^c, Dezhi Chen^{a,b*}

 ^a National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
 ^b Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
 ^b JinChenBoKe Environmental Development Technology Co. Ltd, Tianjin 300384, China
 *Corresponding author: chendz@nchu.edu.cn (D. Chen)

Text S1. Reagent

Sucrose (AR, 99.5%), potassium hydroxide (AR, ≥85.0%), ammonium sulfate (AR, 99.0%), and nitric acid (AR, 65-68%) were purchased from Xilong Science Co., Ltd, Palladium nitrate dihydrate (AR) was purchased from Shanghai McLean Biochemical Technology Co., Ltd, The standard solutions (1000 mg/L) of In, Sc, Ge, Rh, Bi, Y, Li, Na, Al, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Pd, Cd, Te, Ba, La, Ce, Nd, Pb, Ru, K, Mg, Ti, and Nb were all purchased from Tanmo Quality Inspection Technology Co., Ltd, Nitrate compounds (Na, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, La, Ce, Pb, K, Mg) simulating the competing ions in the acidic wastewater of spent fuel were purchased from Xilong Science Co., Ltd.

Fig. S1. The synthesis process of the SPCM.

Fig. S2. Contact angles of the as-prepared carbon samples.

Fig. S3. Adsorption kinetics of Pd(II) on as-prepared carbon samples. a) Pseudo-first-order kinetic model, b) Pseudo-second-order kinetic model, c) Intra-particle diffusion kinetic model, d) Elovich kinetic model. ([sorbent] = 200 mg/L, Pd(II) = 40 mg/L, [HNO₃] = 1 M, T = 35 °C).

Fig. S4. Adsorption isotherms of Pd(II) on SPCM-2. a) Langmuir model, b) Freundlich model, c) Temkin model. ([sorbent] = 200 mg/L, Pd(II) = 20~200 mg/L, [HNO₃] = 1 M, T = 35 °C).

Fig. S5. a) Adsorption capacity of Pd(II) on the S-functionalized porous carbon sphere (SPCM-2) at different temperatures and b) the corresponding Van't Hoff plot of lnKd versus 1/T. ([sorbent] = 200 mg/L, Pd(II) = 40 mg/L, [HNO₃] = 1 M)

Fig. S6. Selective adsorption of Pd ions using the S-functionalized porous carbon sphere (SPCM-2) from actual industry acidic wastewater (pH=0.69) containing Pd, Cu, Ni, Fe and Na metal ions and surfactant. ([SPCM-2]=200 mg/L, T=35 $^{\circ}$ C, V_{solutin}=50 mL)

Fig. S7. pH-dependent zeta potential of the S-functionalized porous carbon sphere (SPCM-2) before

and after Pd(II) adsorption.

Fig. S8. FTIR spectrum of the used S-functionalized porous carbon sphere (SPCM-2) after Pd(II)

adsorption.

Fig. S9. XRD pattern of the used S-functionalized porous carbon sphere (SPCM-2) after Pd(II)

adsorption.

Ions	Conc. (mg/L)	K_d (mL/g)			K			
		1 M	2 M	3 M	1 M	2 M	3 M	
Pd	10.35	1.2×10 ⁴	8.6×10 ³	5.9×10 ³	-	-	-	
Ru	12.92	142.1	31.6	2.3	8.3×10 ¹	2.7×10 ²	2.6×10 ³	
Te	13.36	113.5	24.6	12.7	1.0×10 ²	3.5×10 ²	4.6×10 ²	
Pb	14.55	91.2	40.9	38.1	1.3×10 ²	2.1×10 ²	1.5×10 ²	
Cu	13.70	93.7	6.2	0	1.3×10 ²	1.4×10 ³	>5.9×10 ²	
Zn	13.16	91.9	0	0	1.3×10 ²	>8.6×10 ⁴	>5.9×10 ²	
Co	12.33	84.8	0	0	1.4×10 ²	>8.6×10 ⁴	>5.9×10 ²	
La	11.31	78.1	26.6	17.0	1.5×10 ²	3.2×10^{2}	3.5×10 ²	
Ni	11.76	59.9	0	0	2.0×10 ²	>8.6×10 ⁴	>5.9×10 ⁴	
Ba	14.26	41.2	1.7	0	2.8×10 ²	4.9×10 ³	>5.9×10 ⁴	
Nd	13.70	41.8	37.0	0	2.8×10 ²	2.3×10 ²	>5.9×10 ⁴	
Cr	13.29	42.4	0	0	2.8×10 ²	>8.6×10 ⁴	>5.9×10 ⁴	
Cd	13.32	40.3	0	0	2.9×10 ²	>8.6×10 ⁴	>5.9×10 ⁴	
Mo	13.40	40.4	29.3	0	2.9×10 ²	2.9×10 ²	>5.9×10	
Ce	14.11	32.2	14.2	11.8	3.6×10 ²	6.0×10 ²	5.0×10 ²	
Zr	13.30	22.7	0	0	5.2×10 ²	>8.6×10 ⁴	>5.9×10	
Mn	13.96	20.0	0	0	5.9×10 ²	>8.6×10 ⁴	>5.9×10	
Nb	13.30	0	0	0	>1.2×10 ⁵	>8.6×10 ⁴	>5.9×10	
Fe	11.69	0	0	0	>1.2×10 ⁵	>8.6×10 ⁴	>5.9×10	
Ti	12.41	0	0	0	>1.2×10 ⁵	>8.6×10 ⁴	>5.9×10	
Ca	11.23	0	0	0	>1.2×10 ⁵	>8.6×10 ⁴	>5.9×10	
K	5.51	0	0	0	>1.2×10 ⁵	>8.6×10 ⁴	>5.9×10	
Al	13.96	0	0	0	>1.2×10 ⁵	>8.6×10 ⁴	>5.9×10	
Mg	12.56	0	0	0	>1.2×10 ⁵	>8.6×10 ⁴	>5.9×10	
Na	22.03	0	0	0	>1.2×10 ⁵	>8.6×10 ⁴	>5.9×10	
Li	13.67	0	0	0	>1.2×10 ⁵	>8.6×10 ⁴	>5.9×10	

Table S1. Concentrations of the ions in simulated spent fuel acidic wastewater, the distributioncoefficients K_d and the selectivity coefficients K by the S-functionalized porous carbon sphere(SPCM-2).

Pore volume**	
(cm^{3}/g)	
0.367	
0.682	
0.901	
0.788	
]	

Table S2. Specific surface area (SSA), average pore size, and pore volume of the as-prepared

 carbon samples.

*using Brunauer-Emmett-Teller (BET) method.

** using Horvath-Kawazoe (HK) method

W	Parameters					
Kinetic Model		PCM	SPCM-1	SPCM-2	SPCM-3	
Pseudo-first-order model	k_l	0.008	0.0119	0.0123	0.0141	
	q_e	2.808	2.7836	3.042	3.770	
	\mathbb{R}^2	0.7747	0.6739	0.6414	0.6764	
Pseudo-second-order model	k_2	0.00117	0.000201	0.000156	0.000171	
	q_e	29.214	70.522	80.128	76.394	
	\mathbb{R}^2	0.99895	0.99998	0.99995	0.99988	
Intra-particle diffusion model	k_{il}	6.107	19.318	21.171	17.690	
	C_1	0.351	1.766	1.550	0.498	
	R_1^2	0.9889	0.9716	0.9816	0.9972	
	k_{i2}	0.972	1.275	1.808	2.255	
	C_2	15.978	56.689	60.705	49.910	
	R_2^2	0.9892	0.8673	0.9528	0.9586	
	<i>k</i> _{<i>i</i>3}	0.187	0.0757	0.0400	0.171	
	C ₃	24.881	68.612	78.697	71.978	
	R_3^2	0.5625	0.5675	0.3102	0.5822	
Elovich model	$\alpha_{\rm E}$	132.301	2004644.551	145823.832	1715.729	
	$\beta_{\rm E}$	0.333	0.266	0.197	0.146	
	\mathbb{R}^2	0.9697	0.8390	0.8543	0.8962	

 Table S3. Kinetic parameters of Pd(II) adsorption on the S-functionalized porous carbon sphere

 (SPCM-2)*.

*[sorbent] = 200 mg/L, Pd(II) = 40 mg/L, [HNO₃] = 1 M, T = 35 °C

$HNO_3(M)$	Cost/g								
Sorbent $q_e (mg/g)$	\$	≤ 0.1	0.5	1	2	3	4	6	Ref.
CA-MP@SiO ₂ -P	284.2	-	-	-	-	24.5	-	-	1
CA-BOPhen@SiO ₂ -P	297.5	-	-	-	-	35.1	-	-	1
SBA-15-TEPA	16.24	pH=1.5 89.95	-	-	-	-	-	-	2
SiAaC	0.1372	pH=2 121.8	-	-	-	-	-	-	3
NTAamide(C8)/SiO ₂ -P	599.76	-	-	17	-	-	-	-	4
COP-2	120.82	-	-	182	-	-	-	-	5
CN-DAPhen	516.32	pH=1 124.1	-	-	-	-	-	-	6
C ₈ -Cyclen/CG-71M	560.42	-	-	73.7	-	-	-	-	7
KNiHC/SiO ₂	4.984	pH=1 50.1	-	-		41.9	-	-	8
HEMAP/SiO ₂ -P	185.78	-	-	303.6	-		-	-	9
Tp-Azo-COF/SiO ₂	108.22	-	-	-	-	88.5	-	-	10
CPTPN-Cl	470.96	-	-	-	-	102	-	-	11
Si-TpAL	106.4	-	-	47.9	-		-	-	12
isoPentyl-BTBP/SiO ₂ -P	96.46	-	-	-	-	26	-	-	13
MBI/XAD7HP	0.602	-	126.2	-	-		-	-	14
MBT/XAD7HP	0.602	-	137.6	-	-		-	-	14
MBO/XAD7HP	0.602	-	98.4	-	-		-	-	14
SBA-IL	18.48	pH=4 263	-	-	-		-	-	15
KAlFe(CN) ₆ /SiO ₂	1.169	-	-	-	-	20.6	-	-	16
Si@-UiO-SO ₃ H MOF	76.16	-	-	6.4	-		-	-	17
P5COP-m-BPT	317.8	-	-	-	-	403	-	-	18
CTF-S	38.22	0.1 178.8	-	-	-	146.8	-	113.83	19
CTF-L	32.34	0.1 156.8	-	-	-	107.13	-	91.98	19
DHTH-FTD	230.72	pH=1 250	-	-	-	-	-	-	20
DMTH-FTD	94.92	pH=1 175	-	-	-	-	-	-	20
SPCM-2	0.02	pH=1 140.3 pH=2 156.1 pH=3 164.2	138.7	79.3	54.7	37.1	27	10.2	This work

Table S4. Preparation cost of sorbent and their adsorption capacity for Pd (II) in HNO₃ solution

Table S5. Parameters of isothermal model for adsorption of Pd(II) on the S-functionalized porous

 carbon sphere (SPCM-2).

Adsorption Isotherm	Parameters				
Lonomin	q _{max}	k _L	R ²		
Langmuir	188	0.0299	0.917		
Enour dli alt	n	k _F	R ²		
Freundlich	2.67	24.5	0.961		
Tourin	b	k _T	R ²		
Temkin	67.8	0.382	0.938		

Table S6. Thermodynamic parameters for adsorption of Pd(II) on the S-functionalized porous

 carbon sphere (SPCM-2) at different temperatures.

Temperature (K)	ΔG (kJ/mol)	ΔH (kJ/mol)	$\Delta S (J/(mol \cdot K))$
308	-3.05		
318	-2.58	-27.8	-80.1
328	-1.43		

Reference

- 1. L. Xu, A. Zhang, N. Pu, C. Xu and J. Chen, Development of Two novel silica based symmetric triazine-ring opening N-donor ligands functional adsorbents for highly efficient separation of palladium from HNO₃ solution, *J Hazard Mater*, 2019, **376**, 188-199.
- 2. .S. Xu, S. Ning, Y. Wang, X. Wang, H. Dong, L. Chen, X. Yin, T. Fujita and Y. Wei, Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent, *J. Clean. Product.*, 2023, **396**, 136479.
- 3. H. Liu, S. Ning, S. Zhang, X. Wang, L. Chen, T. Fujita and Y. Wei, Preparation of a mesoporous ion-exchange resin for efficient separation of palladium from simulated electroplating wastewater, *J. Environ.l Chem. Eng.*, 2022, **10**, 106966.
- J. Shi, J. Wang, W. Wang, X. Wu, H. Wang and J. Li, Efficient and Selective Removal of Palladium from Simulated High-Level Liquid Waste Using a Silica-Based Adsorbent NTAamide(C8)/SiO₂-P, *Nanomaterials (Basel)*, 2024, 14, 544.
- 5. H. Liu, P. Wu, K. Wang, Q. Li, C. Yu, X. Li, Y. Cai, W. Feng and L. Yuan, Palladium recovery from acidic solution with phenanthroline-based covalent organic polymers as adsorbents for efficient heterogeneous catalysis, *Green Chem.*, 2024, **26**, 804-814.
- 6. Y. Chen, P. Zhang, Y. Yang, Q. Cao, Q. Guo, Y. Liu, H. Chong and M. Lin, Porous g-C3N4 modified with phenanthroline diamide for efficient and ultrafast adsorption of palladium from simulated high level liquid waste, *Environ. Sc.: Nano*, 2023, **10**, 295-310.
- 7. F. Wu, C. Yang, Y. Liu, S. Hu, G. Ye and J. Chen, Novel polyazamacrocyclic receptor impregnated macroporous polymeric resins for highly efficient capture of palladium from nitric acid media, *Sep. Purif. Technol.*, 2020, **233**., 115953.
- 8. Q. Wang, H. Sang, L. Chen, Y. Wu and Y. Wei, Selective separation of Pd(II) through ion exchange and oxidation-reduction with hexacyanoferrates from high-level liquid waste, *Sep. Purif. Technol.*, 2020, **231**, 115932.
- 9. W. Wang, S. Zhang, L. Chen, Z. Li, K. Wu, Y. Zhang, Z. Su, X. Yin, M. F. Hamza, Y. Wei and S. Ning, Efficient separation of palladium from nitric acid solution by a novel silica-based ion exchanger with ultrahigh adsorption selectivity, *Sep. Purif. Technol.*, 2023, **322**, 124326.
- S. Xu, S. Ning, X. Wang, F. Gao, L. Chen, X. Yin, T. Fujita and Y. Wei, Silica-based covalent organic framework composite for efficient separation and enrichment of palladium and its heterogeneous catalysis application, *Sep. Purif. Technol.*, 2023, **327**, 124977
- 11. X. Yuan, Y. Wang, P. Wu, X. Ouyang, W. Bai, Y. Wan, L. Yuan and W. Feng, High acidityand radiation-resistant triazine-based POPs for recovery of Pd(II) from nuclear fission products, *Chem. Eng. J.*, 2022, **430**, 132618.
- 12. H. Wu, S.-Y. Kim, T. Ito, M. Miwa and S. Matsuyama, One-pot synthesis of silica-gel-based adsorbent with Schiff base group for the recovery of palladium ions from simulated high-level liquid waste, *Nucl. Eng. Technol.*, 2022, **54**, 3641-3649.
- Z. Su, S. Ning, Z. Li and S. Zhang, High-efficiency separation of palladium from nitric acid solution using a silica-polymer-based adsorbent isoPentyl-BTBP/SiO₂-P, *J. Environ.l Chem. Eng.*, 2022, 10, 107928.
- 14. H. Dong, S. Ning, Z. Li, S. Xu, S. Zhang, X. Wang, Y. Wang, L. Chen, X. Yin, T. Fujita, M. F. Hamza and Y. Wei, Efficient separation of palladium from high-level liquid waste with novel adsorbents prepared by sulfhydryl organic ligands containing imidazole, thiazole and oxazole composited with XAD7HP, J. Water Process. Eng., 2023, 53, 103681.

- 15. M. Darroudi, G. Mohammadi Ziarani, J. B. Ghasemi, S. Bahar and A. Badiei, SBA-ionic liquid as an efficient adsorbent of palladium, silver, and gold ions, *J. Iran. Chem. Soc.*, 2021, **19**, 247-255.
- 16. Y. Wen, Y. Wu and L. Xu, Radiation Resistance and Adsorption Behavior of Aluminum Hexacyanoferrate for Pd, *Toxics*, 2023, **11**, 321.
- V. S. Vaddanam, S. Sengupta, B. Sreenivasulu, G. Gopakumar, S. Balakrishnan, C. V. S. Brahmananda Rao and S. Ammath, Ultrahigh Chemically Stable Silica-Embedded UiO-66-SO₃H MOF for the Efficient Recovery of Pd(II) from an Acidic Medium: Experimental and DFT Study, *Cryst. Grow. Des.*, 2024, 24, 4404-4415.
- 18. Y. Wang, Y. Wu, J. Li, Q. Li, P. Yang, S. D. Conradson, Y. Cai, W. Feng and L. Yuan, Ultra-Selective and Efficient Static/Dynamic Palladium Capture from Highly Acidic Solution with Robust Macrocycle-Based Polymers, *Adv. Funct. Mater.*, 2023, **33**, 202304051.
- 19. P. Wu, H. Liu, M. Sun, Y. Zeng, J. Ye, S. Qin, Y. Cai, W. Feng and L. Yuan, Covalent triazine frameworks for the selective sorption of palladium from highly acidic radioactive liquid wastes, *J. Mater. Chem. A*, 2021, **9**, 27320-27331.
- 20. K. Xia, Y. Qin, C. Ni, C. Liu, H. Yan, J. Zou and S. Luo, Hydrazide-functionalized covalent organic frameworks exhibit ultra-high palladium adsorption capacity and excellent selectivity, *Chem. Eng. J.*, 2024, **494**, 153027