Delivering metribuzin from biodegradable nanocarriers: Assessing herbicidal effects for soybean plant protection and weed control

Vanessa Takeshita¹; Felipe F. Oliveira²; Alvaro Garcia³; Nubia Zuverza-Mena⁴; Carlos Tamez⁴; Brian C. Cardoso¹; Camila W. Pinácio¹; Blaire Steven⁵; Jacquelyn LaReau⁵; Carlos E. Astete³; Cristina M. Sabliov³; Leonardo F. Fraceto⁶; Valdemar L. Tornisielo¹; Christian O. Dimkpa⁴; Jason C. White⁴

¹Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil; ²Department of Plant Pathology & Nematology, Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP 13418-900, Brazil; ³Biological & Agricultural Engineering, Louisiana State University and LSU Ag Center, Baton Rouge, LA 70808, United States; ⁴Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States; ⁵Department Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States; ⁶Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, SP 18087-180, Brazil.

Supplementary information

Table S1. Soi	physicochemical	properties.
---------------	-----------------	-------------

Parameters ^a	Sandy loam soil	
Sand (%)	50.4	
Silt (%)	31.6	
Clay (%)	18.0	
$pH(CaCl_2)$	6.1	
Organic matter (%)	3.8	

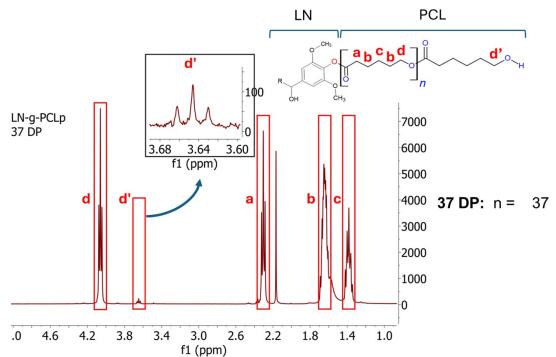
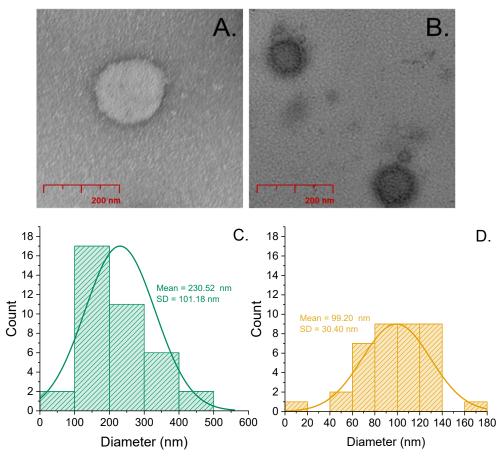

^aSoil analyzed in Cornell Soil Health Lab, Ithaca, New York, United States of America.

Table S2. Nanoparticle characterization by dynamic light scattering (DLS). Hydrodynamic size, polydispersity index (PDI), and surface charge (zeta potential) of PCL-MTZ and PCL-lig-MTZ nanoparticles. The samples were diluted in ultrapure water (1:1000, v/v) and analyzed in ZetaSizer Nano ZS90 equipment (Malvern Instruments, United Kingdom).


Nanoformulation -	Nanoformulation characteristics*			
	Hydrodynamic size (nm)	PDI**	Zeta potential (mV)	
PCL-MTZ	265.83 ± 1.79	0.17 ± 0.05	-27.33 ± 0.03	
PCL-lig-MTZ	178.23 ± 0.26	0.34 ± 0.03	$\textbf{-42.27} \pm 0.07$	

*Measurements before preparation of work application solutions.

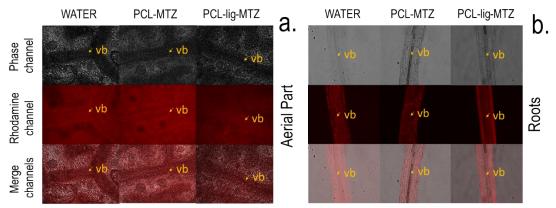

**Dimensionless values.

Figure S1. ¹H-NMR for LN-g-PCL_p 37 DP. Recorded on a Bruker 400 (Billerica, MA) at 400 Hz in deuterated chloroform (CDCl₃).

Figure S2. Morphology characterization of PCL-MTZ (a) and PCL-lig-MTZ (b) nanoparticles by Transmission Electron Microscopy (TEM). Diameter distribution of PCL-MTZ (c) and PCL-lig-MTZ (d) nanoparticles by TEM.

Figure S3. Fluorescence intensity of *Amaranthus retroflexus* plants at 5 days after application of metribuzin nanoformulations. Yellow arrows indicate the vascular bundles (vb) in the images of the aerial part and root (A).