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Section S1. Materials Preparation

Preparation of PVA-LHO copolymerized hydrogel (LaCPVA), pure PVA 

hydrogel and La-NP modified PVA hydrogel (La-PVA)

PvaLaC was prepared through the following repeated freezing-and-melting 

method. Initially, 10 mL of LHO at a concentration of 50 mg/mL was centrifuged at 

8000 rpm for 5 min, and then the supernatant was removed. Aqueous solutions 

containing 10 wt. % PVA were formed by dissolving PVA in deionized water at 90°C 

for 6 h. The PVA aqueous solution was then uniformly mixed with the LHO precipitate 

to obtain a homogeneous emulsion. Next, the PVA solution was frozen using an ultra-

low temperature upright freezer maintained at -74±2°C. After 12 h, the frozen sample 

was thawed at room temperature for 6 h. This freeze and melt cycle were repeated three 

times. The pure PVA hydrogel was synthesized using the same procedure as mentioned 

above without the use of LHO. La-PVA was synthesized by substituting LHO with a 

La-NP solution.

Preparation of PAM-LHO copolymerized hydrogel (LaCPAM), pure PAM 

hydrogel and La-NP modified PAM hydrogel (La-PAM)

Initially, 10 mL of the LHO solution (50 mg/mL) was centrifugated for 5 min at 

8000 rpm, and the supernatant was discarded. Next, an aqueous AM solution (1.0 g of 

AM dissolved in 4 mL of H2O) was mixed uniformly with the LHO precipitate to 

generate a homogeneous emulsion. Subsequently, 4 mL of an MBAA alcoholic solution 

(5 mg/L) was added to the emulsion under vigorous stirring. Finally, 0.4 mL of a 

saturated KPS ethanol solution and 20 μL of TEMED were added to the mixture, which 
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had been pre-deoxygenated with N2 gas for 30 min. After a copolymerization reaction 

at 25°C for 24 h, the resulting white gel was washed with ethanol and deionized water 

to eliminate any residues, then dried under vacuum at -40°C for 24 h, resulting in the 

formation of bulk PamLaC. A pure PAM hydrogel was synthesized by following the 

procedure outlined above, excluding the inclusion of LHO. La-PAM was prepared by 

substituting LHO with a solution of La-NP.

Section S2. Adsorption Models

The isothermal adsorption curves were analyzed using the Langmuir and 

Freundlich equations. The Langmuir equation is formulated as follows:

𝑞𝑒=
𝑞𝑚𝑏𝐶𝑒
1 + 𝑏𝑞𝑚

where qe represents the equilibrium adsorption concentration (mg/L), Ce is the 

equilibrium liquid-phase concentration (mg/L), qm is the theoretical saturation sorption 

capacity (mg/g), b is a constant related to the adsorption heat 1. The reliability of 

Langmuir equation could be assessed using the value of RL as below:

𝑅𝐿=
1

1 + 𝑏𝐶0

where C0 is the initial adsorbent concentration. When 0<RL≤1, the experiment 

data could fit the Langmuir model; when RL = 0 or RL>1, the experiment data could not 

fit the model.

The Freundlich equation was utilized to describe non-ideal and multi-layer 

adsorption on heterogeneous adsorbents’ surfaces 2. The Freundlich equation is 

expressed as:
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𝑞𝑒= 𝐾𝐹𝐶
1/𝑛
𝑒

Alternatively, this equation can be linearized as:

lg 𝑞𝑒=
1
𝑛
lg 𝐶𝑒+ 𝑙𝑔𝐾𝐹

where KF (mg1+n Ln/g) and n are Freundlich constants.

The adsorption kinetics were performed in 100 mL of a 100.0 mg P/L solution at 

a dosage of 0.3 g/L at pH 7.0±0.2 agitated for 1.5 h at 300 rpm/min under 25°C. The 

pseudo-first-order (PFO) kinetic equation and pseudo-second-order (PSO) kinetic 

equation was applied to analyze adsorption kinetics.

The Liu isotherm model represents a synergistic amalgamation of the Langmuir 

and Freundlich isotherm models, with a departure from the Langmuir model’s 

monolayer adsorption hypothesis and the Freundlich model’s assumption of an 

unlimited adsorption capacity 3. This approach posits that the active sites on the 

adsorbent surface exhibit a heterogeneous distribution of energies. The Liu equation is 

as follows:

𝑞𝑒=
𝑄𝑚𝑎𝑥(𝐾𝑔𝐶𝑒)

1 + (𝐾𝑔𝐶𝑒)
𝑛𝐿

where Kg is the Liu equilibrium constant (L/mg); nL is dimensionless exponent of 

the Liu equation, and Qmax is the maximum adsorption capacity of the adsorbent 

(mg/g).

The usage of La (gLa) was calculated as follows:

𝑔𝐿𝑎=
𝑄𝐿𝑎𝐶𝐶𝐻 ‒ 𝑄𝐶𝐻

𝑊𝐿𝑎

where QLaCCH (mg/g) is the maximum adsorption capacity of LaCCH, QCH is the 
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adsorption capacity of CH at the same equilibrium adsorption concentration calculated by 

the isotherm model, WLa is La element content (wt%) in LaCCH.

The PFO rate expression based on capacity is generally expressed as follows:

𝑑𝑞𝑡
𝑑𝑡

= 𝑘1(𝑞𝑒 ‒ 𝑞𝑡)

Where K1 (min−1) is the PFO rate constant; qe (mg/g) and qt (mg/g) are the amount 

of P adsorbed per unit weight of the adsorbent at equilibrium and time t. 

The PSO equation is also based on the sorption capacity, which is expressed as 

follows:

𝑑𝑞𝑡
𝑑𝑡

= 𝑘2(𝑞𝑒 ‒ 𝑞𝑡)2

this equation also could be expressed by a linear model as follows:

𝑡
𝑞𝑡
=

1

𝑘2𝑞
2
𝑒

+
1
𝑞𝑒
𝑡

Where k2 (g/(mg⸱ min)) is the rate constant of second-order adsorption.
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Section S2. Supplemental Figures and Tables

Fig. S1 Ultrathin slices TEM images of CH.

Fig. S2 SEM-EDS mapping (a-c), TEM (d) and SAED (e) images of LaCCH.

Fig. S3 SEM-EDS mapping (a-d), TEM (e) and SAED (f) images of La-CH.



7

0 100 200 300 400 500 600 700 800
30

40

50

60

70

80

90

100

32.5%
37.2%

W
ei

gh
t (

%
)

Temperature (C)

 CH
 La-CH
 LaCCH

40.5%

Fig. S4 TGA curves of LaCCH, La-CH and CH.
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Fig. S5 Raman spectra of LaCCH, La-CH and CH.
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Fig. S6 Reconstructed 2D ToF-SIMS images of La+ after 60 s sputtering, and Dynamic 
ToF-SIMS depth profiling of LaCCH (a) and La-CH (b). A darker color represents a 
stronger signal intensity.
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Fig. S7 Breakthrough curve of P adsorption by LaCCH with the feeding of a simulated 
effluent (TP=1.0 mg/L; COD=500 mg/L; [NaCl]=500 mg/L; [NaNO3-N]=50 mg/L; 
[NH4-N]=20 mg/L; pH=6.90-7.15; EBCT=6.25 BV/h, adsorbent dosage: 0.18 g/cm).
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Fig. S8 Raman spectroscopy spectra of the LaCCH after P adsorption at pH=5.0-9.0.

Fig. S9 TEM (a), SAED (b) and EDS-mapping (c-d) images of LaCCH after P 
saturated.
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Fig. S10 Adsorption isotherms of PVA/La-PVA/LaCPVA (a) and PAM/La-
PAM/LaCPAM (b).

Fig. S11 TEM images of LaCCH (a), La-CH (b), LaCPVA (c), La-PVA (d), 
LaCPAM (e) and La-PAM (f).
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Fig. S12 The distribution of free path spacing corresponding to TEM images: (a) 
LaCPVA and PVA-La; (b) LaCCH and La-CH; (c) LaCPAM and La-PAM.

Fig.S13 Dependence of lg perimeter P on lg area A obtained from the binary TEM 
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images (Fig. S11) of La-PVA (a), LaCPVA (b), La-CH (c), LaCCH (d), La-PAM (e) 
and LaCPAM (f).

Table S1 Parameters of isotherms fitting of LaCCH, La-CH and CH.
Langmuir Freundlich Liu

Equations
𝑞𝑒=

𝑘𝐿𝑞𝑒𝑐

1 + 𝑘𝐿𝑐 𝑞𝑒= 𝑘𝐹𝑐
1
𝑛 𝑞𝑒=

𝑄(𝑘𝑥)𝑛

1 + (𝑘𝑥)𝑛

qm kL RL
2 kF 1/n RF

2 Q k n Rl
2

LaCCH 108.27 0.124 0.92 16.14 1.82 0.87 75.28 0.25 1.74 0.96
La-CH 87.74 0.09 0.91 10.42 1.72 0.88 57.59 0.20 1.77 0.93

CH 49.08 0.12 0.96 8.10 2.00 0.91 65.64 0.21 1.71 0.98

Table S2 Comparison of phosphorus adsorption capacity for different 
dephosphorization adsorbents

Adsorbent pH
Initial concentration

(mg/L)
qm 

(mg/g)
Ref. 

La-MOFs 2.0-11.0 - 87.48-51.50 4

OA-La(OH)3 3.0-11.0 1-100 168 5

LaAl-BTC 2.0-12.0 5–1000 72.27-39.71 6

La@Fe 1.0-13.0 5-600 130–160 7

SCBC-La 3.0-9.0 50-120 48 8

LCM 2.0-10.0 10-100 77.49 9

HKL-LaOH 4.0-10.0 1-200 26.15 10

CCH@La 3.0-9.0 1-50 92.54 11
LDHs-Modified 

Biochar
3.0-11.0 10-60 10.64 12

FeCa-LDH 4.0-10.0 50-600 - 13
UiO-66-

NH2@Mg(OH)2
4.0-11.0 10-150 130.39 14

FMBO-S 3.0-10.0 5-120 61.24 15

MOF-76(Ce) 3.0-11.0 5-25 72.97 16

CaxLa1-xMnO3 3.0-11.0 1-10 37.8 17

CaFe1:2-700 3.0-11.0 25-300 62–75 18

MgBC600 3.0-11.0 0.5-160 109.35 19

MMBC-200/600 3.0-11.0 75 83.06 20

Ce-BC 3.0-11.0 1-50 16.7 21
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OH/NH2@MBC 5.0-9.0 - 52.53 22

La-MBC 4.0-8.0 0.5-15 27.49 23

OV-MgO 3.0-11.0 50-100 379.7 24

EFG 4.0-10.0 0-100 49.92 25

LC@AER 6.0-10.0 - 49.89 26

FeCaMg-ALE 2.0-12.0 0-100 20.1 27

Fe/Mn-BMBCs 3.0-11.0 5-150 44.0–53.8 28

Fe2++HFO 2.0-10.0 5-200 51.7 29

La@PAN 3.0-6.0 10-500 83.33 30

MC-hal-2 3.0-11.0 - 136.7 31

Mg-La LDH 3.0-11.0 100-500 87.23 32

CSPGs-La 2.0-10.0 50-350 159.5 33
La-loaded 

geopolymer
4.0-12.0 5-60 33.65 34

biochar 2.0-10.0 0-400 98.5 35

LDH-biochar 7.0 0-200 160.8 36

CeAC-A 3.0-11.0 5-120 95.47 37

Mg60Al40-LDH - 1-50 108.8 38

LZ 3.0-10.0 10-150 122.7 39

MGPA DN hydrogel 3.0-12.0 10-150 38.75 40

ZIF-L@GO 3.0-10.0 1-200 116.3 ± 2.1 41

MBC 3.0-11.0 25-200 70.26 42

NH2-CNS-La 2.0-12.0 5-100 103.01 43

Fe-CLCAB 1.0-9.0 10-200 73.13 44
Ca/(Al-DWTAS)-

LDO
2.0-11.0 10-100 110.14 45

CaMgAl-LDH 3.0-11.0 0-150 21.47 46

nano-CaO2/BFS 4.0-10.0 5-20 67.48 47

MAC@Zr 3.0-9.0 0-50 14.3 48

LaCCH 3.0-11.0 1-50 70.0 This study

Table S3 Kinetics constants for phosphate adsorption on the LaCCH.
Kinetic model qe (mg/g) kl R2

like-pseudo-first-order 𝑞𝑡= 𝑞𝑒(1 ‒ 𝑒
‒ 𝑘1𝑡) 68.4 9.30 0.950

like-pseudo-second-order 𝑞𝑡=
𝑞2𝑒𝑘2𝑡

1 + 𝑞𝑒𝑘2𝑡
71.37 0.21 0.992
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Table S4 Deconvolution of XPS P 2p spectra for LaCCH after P adsorption.

Samples Species B.E.a 
(eV)

FWHMb 
(eV) G:Lc ratio Percentd 

(%)

La-PO4
3- 133.1 1.16 0:100 28.8

LaCCH
La-HPO4

2- 132.1 1.27 14:86 71.2
aBinding energy (B.E.); bThe full width at half maximum (FWHM); cGaussian: Lorentzian ratio; 
dThe percentage represents the contribution of each peak to the total number of counts under the P 
2p peak.

Table S5 Deconvolution of XPS La 3d spectra for LaCCH sample before and after P 
adsorption.

Samples Peak B.E.a 
(eV)

FWHM
b (eV)

G:Lc 
ratio Percentd (%)

main 835.2 2.63 0:100 31.5
La 

3d5/2
satel
lite 839.0 2.4 0:100 29.2

main 851.9 2.57 2:98 21.8
LaCCH

La 
3d3/2

satel
lite 855.8 2.3 0:100 17.6

main 835.5 2.1 0:100 23.3
La 

3d5/2
satel
lite 837.8 2.9 93:7 40.1

main 851.1 1.4 0:100 11.2
LaCCH+P

La 
3d3/2

satel
lite 854.3 4.5 9:91 25.1

aBinding energy (B.E.); bThe full width at half maximum (FWHM); cGaussian: Lorentzian ratio; 
dThe percentage represents the contribution of each peak to the total number of counts under the P 
2p peak.

Table S6 Deconvolution of XPS O 1s spectra for LaCCH sample before and after P 
adsorption.

Samples Species B.E.a 
(eV)

FWHMb 
(eV) G:Lc ratio Percentd 

(%)

La–O 531.7 2.6 0:100 85.0
LaCCH

-OH 529.5 1.1 0:100 15.0

LaCCH +P La–O 532.0 1.8 0:100 27.9
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-OH 530.5 1.5 18:82 45.4

531.6 1.1 19:81 26.7
aBinding energy (B.E.); bThe full width at half maximum (FWHM); cGaussian: Lorentzian ratio; 
dThe percentage represents the contribution of each peak to the total number of counts under the P 
2p peak.
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