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Synthesis of CeO,

CeQO, was prepared using the facile hydrothermal calcination method. Initially, 6
mmol of Ce(NO;);:6H,0 was dissolved in 100 mL of deionized water by
ultrasound at room temperature. The solution was then transferred to a
thermostat water bath. Next, 4 mL of NH;-H,O was added to the aforementioned
solution. The mixture was stirred for 2 h at 40 °C and aged for 12 h. The
resulting precipitate was washed several times with ultrapure water and ethanol
absolute, and then dried in a vacuum freeze drier. Finally, the treated powder
products were heated at 300 °C for 2 h at a heating rate of 2 °C/min in a tubular

furnace.

Synthesis of Co/CeO; or Mn/CeO,

Co/CeO; or Mn/CeQO, catalyst was synthesized by hydrothermal calcination
method. Firstly, 6 mmol of Ce(NOj3);:6H,O and 2 mmol of CoCl,6H,0 or
MnCl,;'4H,0 were comprehensively dissolved in 100 mL of deionized water.
Secondly, 4 mL of NH; H,0 was rapidly added to the above solution. Thirdly,
the aforementioned suspensions were transferred to a water bath (40 °C) and
stirred for 2 h, followed by aging for 12 h. Subsequently, the resulting product
was washed with ultrapure water and ethanol absolute, before being dried using

a vacuum freeze dryer. Finally, the prepared products were heated in a tube
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furnace (300 ° C,2 ° C/min, 2 h).

Catalyst Characterization

The XRD patterns of the synthesized samples were analyzed using a Bruker X-
ray Diffractometer (Germany). The specific surface area and pore size were
obtained by BET on a Micromeritics ASAP 2460 (USA) instrument. The
morphology and microstructure of the samples were examined using a Hitachi
S4800 FEG SEM and Tecnai G2 20 TEM. X-ray photoelectron spectroscopy
(XPS) analysis was performed using a Thermo Fisher Scientific ESCALAB
250XI spectrometer to characterize the chemical composition and chemical
environment of as-samples. Elemental analysis and metal leaching were
conducted using an Agilent 730 inductively coupled plasma optical emission
spectrometer (ICP-OES), with the sample being dissolved in a strong acid
solution prior to testing. The contact angle meter was obtained by an Angle
Contact Metering System (XG-CAM). Electron spin resonance spectroscopy
(ESR) was conducted using a Bruker EMXPLUS spectrometer. The AutoChem
II 2920 apparatus was used to perform oxygen temperature-programmed
desorption (O,-TPD) and hydrogen temperature-programmed reduction (H,-

TPR).

Catalytic Activity Evaluation

CIP was selected to evaluate the catalytic performance of Mn,Co/CeQO,.
Specifically, a mixture containing 300 mg/L of catalytic sample, 100 mg/L of
PMS, and 50 mL of CIP (10 mg/L) aqueous solution was stirred uniformly for 50
min at room temperature in a quartz tube. Subsequently, the mixed solution was
taken at regular intervals and passed through a 0.22 pm pinhole filtration
membrane for filtration. The concentration of CIP was monitored using a
METASH UV-5100B spectrophotometer at 276 nm. To calculate the actual

degradation efficiency, formula S1 was employed after converting the



absorbance and concentration values. Furthermore, all degradation experiments
were conducted using ultrapure water as the solvent.

Calculation method of CIP removal rate: the corresponding removal rate of CIP
was calculated by the following formula S1.

N (%) = (C/Cy) x 100

Where C, is the initial concentration of CIP in solution, C; is the CIP

concentration under different reaction time, 1 is the pollutant removal rate.

Texts

Text S1. Materials

All reagents were analytical grade and without further purification. Cerium
nitrate hexahydrate (Ce(NOj3);-6H,0) furfuryl alcohol (FFA), and ciprofloxacin
(CIP) were furnished by Macklin Biochemical Co., Ltd. Cobaltous chloride
(CoCl,'6H,0), tert-butanol (TBA), and tetracycline(TC) were obtained from
Aladdin Biochemical Technology Co., Ltd. Manganese chloride tetrahydrate
(MnCl, 4H,0), ammonium hydroxide (NH4OH), ethanol, ethylenediamine tetra
acetic acid disodium salt (EDTA-2Na), p-benzoquinone (PBQ), methanol, and
rhodamine B (RhB) were purchased from Sinopharm Chemical Reagent Co.,
Ltd. Chlortetracycline (CTC) and oxytetracycline (OTC) were provided by
Meryer (Shanghai) Chemical Technology Co., Ltd.

Text S2. DFT calculations

First-principles calculations in the framework DFT are performed by using the
Vienna Ab Initio Simulation Package (VASP) with the projector-augmented
wave method (PAW).! The exchange-correlation energy was calculated by using
the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof
(PBE).2 To correct the van der Waals interactions, the DFT-D3 method proposed
by Grimme et al. was adopted.> The energy cutoff is set to 400 eV. Spin
polarization effects are considered in this study. We performed structural

optimization until the residual forces on each ion converged to less than 0.01 eV
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A1, A 3x3 surface unit cell was used for the CeO, (111) surface. The
Mn,Co/Ce0O, was constructed by replacing one of the surface Ce atoms with a
Co or/and Mn atom. Oxygen vacancy was modeled by removing one oxygen
atom from a unit cell. The adsorption energy for surface PMS adsorbates is
defined as follows: AEpys = Eagsorption = Esurface = 0.5 X Epms(8), where Egggorption
represents the energy of the surface with the adsorbed PMS, Ef.ce represents
the energy of the pure surface, and Epys(g) represents the energy of the PMS
species in the gas phase. The calculation also includes entropy (S) and zero-point
energy (Ezpg) to obtain the Gibbs free adsorption energy of PMS: AGpys =
AEpys + AEzpg — TAS.

Text S3. Toxicity calculation

The toxicity of CIP and its oxidation process products were evaluated by the
ecological structure-activity relationship (ECOSAR) predictive model. The
median lethal concentration (LC50) of fish exposed to CIP for 96 h, daphnid
exposed for 48 h, and median effect concentration (EC50) of green algae exposed
for 96 h were calculated by this software. In the meantime, the geometric mean
of the unobserved effect concentration and the lowest observed effect
concentration (ChV) for fish, daphnid, and green algae were assessed. Acute

toxicity was evaluated as LC50 or EC50, and chronic toxicity as ChV.

Text S4. Partial reaction

SO, + H,0 — -OH + SO~ + H* (S1)
-S04~ + OH™ — -OH + SO, (S2)
HSOs™ - SOs?~ + H* (S3)
SOs? + H,0 - -0, + SO + H* (S4)
-S04~ + OH™ — -OH + SO, (S5)
‘OH + OH - -0,” + H,0 (S6)
2:0,” + H,0 — 210, + H,0, + 20H- (S7)



‘SO5™ +:S05” - 2S04 + 10, (S8)
HSOs™ + SOs>” - HSO,~ + SO +10, (S9)
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Fig. S1 XRD patterns of the synthesized catalysts.
The peaks of 20 = 28.55°, 33.08°, 47.48°, 56.34°, 59.09°, 69.42°, 76.70°, and 79.08°
were attributed to (111), (200), (220), (311), (222), (400), (331) and (420) crystal

plane of CeQ,, respectively.

Fig. S2 SEM images of the completed samples: (a) CeQO,, (b) Co/CeO,, (¢)



Mn/CeQ,, (d) Mng,5C0/CeO,, (¢) MnCo/CeQO,, (f) Mn3;Co/CeO;.
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Fig. S3 (a) HAADF-STEM image and EDX mapping results of the as-prepared
MnCo/CeO, sample, (b) all elements, (¢) Co, (d) Ce, (¢) Mn, (f) O.
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Fig. S4 Isothermal adsorption-desorption curves and the corresponding pore-size

distributions (inset) of MnCo/CeQO,.
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Fig. S5 Surface water contact angle measurements of as-prepared samples.
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Fig. S6 XPS spectra of as-prepared samples: (a) survey, (b) Ce 3d, (c) Co 2p, (d)

Mn 2p.
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Fig. S7 The content proportion of Ce3* in the synthesized sample.
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Fig. S8 Changes in TOVs concentration of the synthesized sample.
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Fig. S9 Effects of different factors on CIP degradation: (a) CIP concentration, (b)

HA, (c) temperature, (d) natural substrates, (e) different pollutants.
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Fig. S10 Proposed degradation pathway of CIP. The O, C, F, H, and N atoms are

shown in red, gray, yellow, white, and blue, respectively.
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Fig. S11 Possible degradation paths of CIP oxidized by MnCo/CeO,.
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Fig. S12 Optimized configurations of PMS adsorbed on (a) traditional CeO, (111)
substrate, (b) CeO, (111) substrate with OVs, (¢) Co/CeQ, (111) substratewith
OVs, (d) Mn/CeQO; (111) substrate with OVs. The O, Ce, S, H, Co, and Mn atoms

are shown in red, green, yellow, pink, blue, and purple, respectively.

Tables

Table S1. Metal doping content and leaching of MnCo/CeO,.

Co Mn
Metal doping content 6.21% 7.51%
(%)
Metal leaching (mg/L) 0.55 0.26
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Table S2. Comparison of MnCo/CeQO, and reported catalysts in the catalytic

performances for CIP degradation.

PMS

CIPconcentrati  Catalyst Removal
Catalyst concentratio Time Ref.

on s dosage efficiency

n

Coy ¢/ N@ZS-SA 20 mg/L 6 g/L 0.5 g/LL 60 min 82.5% 4
CuS/Fe;03/Mn,03 10 mg/L 0.2¢g/LL 0.6 g/L 120 min  88.0% S
CoO-N/BC 10 mg/L 0.1g. 1mM 60 min 84.3% 6
BiVOy/visible light 10 mg/L 0.32 g/ 0.96 g/L 120 min  92.3% 7
Magnetized

10 mg/L 08g/LL 0.2g/L 80 min  92.6% 8
nitrogen-doped biochar
Co0304/CeOy/visible light 5 mg/L 05¢g/LL  0.1¢g/L 50 min 87.8% o
CuCo/C 10 mg/L 0.25 g/ 0.25 g/LL 30 min 90.0% 10
CuFe,04/CuO 5 mg/L 05¢g/LL.  03¢g/L 120 min  86.67% 1
CoFe,O 20 mg/L 03g/L. 2mM 90 min  90.0% 12

This
MnCo/CeO, 10 mg/L 03g/LL 0.1¢g/L 50 min 93.71%
work
Table S3. Toxicity evaluation of the intermediates.
Acute toxicity (mg/L) Chronic toxicity (mg/L)
Degradation Hazard
Green Green
products Fish Daphnid Fish Daphnid category

Algae Algae
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II

I

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

CIP

m/z
349.39
m/z
364.83
m/z
360.51
m/z
334.32
m/z
290.89
m/z
265.31
m/z
245.34
m/z
274.47
m/z
321.20
m/z
323.49
m/z
322.56
m/z
331.89

m/z

16

96-hr LC5

48-hr

CSO

17.838

96-hr ECs

47.278

Chv

34.874

18.673

77.646

Very
toxic
Not
harmful
Not
harmful
Not
harmful
Not
harmful

Harmful

Not
harmful

Harmful

Not
harmful
Not
harmful
Not
harmful
Not
harmful

Harmful

Toxic



P14

IV P15

P16

284.57

m/z = Harmful
57.804 67.214

297.48

m/z = Harmful

295.06

m/z = Not

274.52 harmful

Notes: Green: Not harmful; Yellow: Harmful; Orange: Toxic; Red: Very toxic
According to toxicity assessment levels of the Globally Harmonized System of
Classification and Labeling of Chemicals, the four levels include:

Not harmful (LCs5¢/EC5¢/ChV > 100 mg/L),

Harmful (10 mg/L < LC5¢/EC5¢/ChV <100 mg/L),

Toxic (1 mg/L < LCs5¢/EC5y/ChV <10 mg/L),

Very toxic (LCs5¢/ECs¢/ChV <1 mg/L).

The lowest acute toxicity values between and with different species are used to
define the appropriate hazard category of the compounds.

* = asterisk designates: Chemical may not be soluble enough to measure this
predicted effect. If the effect level exceeds the water solubility by 10X, typically
no effects at saturation (NES) are reported.

! = exclamation designates: The toxicity value was estimated through application
of acute-to-chronic ratios per methods outlined in the ECOSAR Methodology
Document provided in the ECOSAR Help Menu.
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