Supplementary Information (SI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Solid Phase Silver Sulfide Nanoparticles Contribute Significantly to Biotic Silver in Agricultural Systems

Yingnan Huang^{a#}, Huijun Yan^{a,b#}, Fei Dang^{a*}, Zhenyu Wang^{c,d}, Jason C. White^e,

Yujun Wang^a

^a State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science,

Chinese Academy of Sciences, Nanjing 211135, China

^b College of Geography and Environment, Shandong Normal University, Jinan

250358, China

^c Institute of Environmental Processes and Pollution Control, and School of

Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China

^d Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction

Technology, Jiangnan University, Wuxi 214122, China

^e Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA

[#] Y.N.H. and H.J.Y. contributed equally to this work.

*Corresponding author: Fei Dang

Email: fdang@issas.ac.cn

Figure S1. Rainfall data are based on historical re-analysis datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF)/National Aeronautics and Space Administration (NASA), provided by www.xihe-energy.com. The vertical pink line indicates the time when the mesocosms were covered by a temporary roof.

Figure S2. The fresh weight of radish roots from NP_{red} and NP_{black} mesocosms. NP_{red}: mesocosms with NPs in red soil; NP_{black}: mesocosms with NPs in black soil. Data shown are the averages of two replicates \pm SD. All individuals were pooled together for each replicate. No significant difference was observed between the treatments at p > 0.05.

Figure S3. Bioaccumulation of Ag in (a) rice shoots, (b) rice roots, and (c) radish leaves after exposure to NPs. NP_{red}: mesocosms with NPs in red soil; NP_{black}: mesocosms with NPs in black soil. Data shown are the averages of four replicates \pm SD for rice shoots and radish leaves, and the averages of two replicates \pm SD for rice roots.

Figure S4. The available data on the levels of soil-borne NPs. The data are available in the literature.¹⁻³

Table S1. Physical and chemical properties of the sampled soils.

		Organic matter		CEC ^c	Total nitrogen ^d	Total Ag	Total Fe
Sample	Texture	content (g kg ⁻¹) ^{a *}	pH ^b *	(mol kg ⁻¹)	(%)	$(mg kg^{-1})*$	$(g kg^{-1})^*$
Red soil	Loamy clay	16.9 ± 0.03	5.0 ± 0.04	12.3	0.16	0.4 ± 0.01	37.1 ± 1.7
Black soil	Loamy clay	27.6 ± 0.1	6.7 ± 0.1	29.0	0.15	0.2 ± 0.01	28.6 ± 0.9

^a Determination of organic matter by potassium dichromate oxidation and external heating. Data shown are the averages of two replicates \pm SD (n=2).

^b pH was determined by potentiometric method with soil-water ratio 1:5. Data shown are the averages of two replicates \pm SD (n=2).

^c Determination of cation exchange capacity (CEC) by EDTA-ammonium salt.

^d Determination of total nitrogen by semi-trace Kjeldahl method.

*A significant difference was observed between the soils (p < 0.05).

Table S2. Concentrations of major cations in the water column before NPs addition. The water was collected from a local Reservoir. The cations were measured by Inductively Coupled Plasma Optical Emission Spectrometry (iCAP7400, Thermo Fisher, USA). Data shown are the averages of four replicates \pm SD.

Cations (mg L ⁻¹)	NP _{Red} mesocosm	NP_{Black} mesocosm
K^{+} *	2.5 ± 0.7	0.8 ± 0.4
Ca ^{2+ *}	8.3 ± 0.7	76.1 ± 8.2
$Mg^{2+}*$	5.2 ± 1.0	13.8 ± 1.0

* A significant difference was observed between the soils (p < 0.05).

Instance	Abundance			
Isotope	Ag ₂ S-NPs ^a	$^{109}Ag_2S-NPs^b$		
¹⁰⁷ Ag	0.5180	0.0042		
¹⁰⁹ Ag	0.4820	0.9958		

Table S3. The isotope abundances of $^{109}Ag_2S$ -NPs and Ag_2S -NPs.

^a The abundance of ¹⁰⁷Ag and ¹⁰⁹Ag in Ag₂S-NPs are the natural abundances of Ag, respectively.⁴

^b The abundances of ¹⁰⁷Ag and ¹⁰⁹Ag in ¹⁰⁹Ag₂S-NPs are calculated based on the determined concentrations of ¹⁰⁷Ag and ¹⁰⁹Ag by ICP-MS. Data shown are the averages of ten replicates.

Soil type	Plant	Time	Relative bioavailability of water-borne NPs to soil-borne NPs
	Duorra nico	1 st rice season	$2.4 \pm 1.5^{\mathrm{a}}$
	Brown rice	2 nd rice season	$0.2\pm0.1^{\mathrm{a}}$
NP _{red} mesocosms			
	Duckweed	2 nd rice season	$8.1\pm0.01^{\text{b}}$
	Rice borer	2 nd rice season	1.3 ± 1.8^{b}
	Brown rice	1 st rice season	$3.1\pm0.6^{\mathrm{a}}$
	Diowii nee	2 nd rice season	$1.8\pm0.6^{\mathrm{a}}$
NP _{black} mesocosms			
	Duckweed	2 nd rice season	6.8 ± 2.8^{b}
	Rice borer	2 nd rice season	$2.8 \pm 1.0^{\mathrm{b}}$
NP _{red} mesocosms	Radish roots	-	$2.6\pm0.5^{\mathrm{a}}$
NP _{black} mesocosms	Radish roots	-	$4.8\pm0.7^{\mathrm{a}}$

Table S4. The relative bioavailability of water-borne to soil-borne NPs. This is calculated as the percentage of biotic Ag from initially water-borne NPs (i.e., normalized by their exposure concentrations) divided by the percentage of biotic Ag from the soil-borne NPs.

^a Data shown are the averages of four replicates \pm SD.

^b Data shown are the averages of two replicates \pm SD.

Table S5. The soil-to-plant transfer factor for soil-borne NPs (TF, the ratio of Ag concentrations in edible tissues derived from soil-borne NPs to their soil-borne NPs levels).

Soil type	Plant	Time	TF value
ND magaaaama	Drown rice	1 st rice season	2.1×10-2
NP _{red} mesocosms	DIOWIIIICE	2 nd rice season	1.4×10 ⁻²
ND masaaasma	Proven rico	1 st rice season	1.8×10 ⁻²
INF black Incsocosins	DIOWITICE	2 nd rice season	4.6×10 ⁻³
NP _{red} mesocosms	Radish roots	-	7.4×10 ⁻²
NP _{black} mesocosms	Radish roots	-	1.5×10 ⁻²

REFERENCES

1. A. Hong, Q. Tang, A. U. Khan, M. Miao, Z. Xu, and F. Dang, *et al.*, Identification and speciation of nanoscale silver in complex solid matrices by sequential extraction coupled with inductively coupled plasma optical emission spectrometry. *Anal. Chem.*, 2021, **93**, 1962-1968.

2. L. Li, Q. Wang, Y. Yang, L. Luo, R. Ding, and Z.G. Yang *et al.*, Extraction method development for quantitative detection of silver nanoparticles in environmental soils and sediments by single particle inductively coupled plasma mass spectrometry. *Anal. Chem.*, 2019, **91**, 9442-9450.

3. P. Wang, N. W. Menzies, P. G. Dennis, J. Guo, C. Forstner, and R. Sekine, *et al.*, Silver nanoparticles entering soils via the wastewater–sludge–soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability. *Environ. Sci. Technol*, 2016, **50**, 8274-8281.

4. F. Dang, Y. Z. Chen, Y. N. Huang, H. Hintelmann, Y. B. Si and D. M. Zhou, Discerning the sources of silver nanoparticle in a terrestrial food chain by stable isotope tracer technique. *Environ. Sci. Technol*, 2019, **53**, 3802-3810.