Supplementary Material

Exploring on effects of unmodified and amine-functionalized polystyrene nanoplastics on nitrogen removal by *Pseudomonas stutzeri*: From strain characteristics, extracellular polymers to transcriptomics

Rui Yang ^a, Jianwei Qu ^a, Hanxiang Li ^b, Weile Meng ^a, Xiaowei Xu ^a, Jinsong Guo ^a, Fang Fang ^a, *

^a Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry

of Education, Chongqing University, Chongqing 400045, China

^b Jiangsu Provincial Key Laboratory of Environmental Science and Engineering,

Suzhou University of Science and Technology, Suzhou, 215009, China

NUMBER OF PAGES: 13

NUMBER OF TEXTS: 3

NUMBER OF TABLES: 2

NUMBER OF FIGURES: 5

Text S1. Preparation of PS NPs.

Text S2. Strain rejuvenation.

Text S3. Compositions of mediums.

Table. S1 Characteristics of PS NPs and PS-NH₂ NPs.

Table. S2 C, O, N and functional group composition in the EPS of P. stutzeri.

Fig. S1 FTIR spectra of PS NPs and PS-NH₂ NPs.

Fig. S2 SEM image of PS NPs (a) and PS-NH₂ NPs (b).

Fig. S3 SEM images of *P. stutzeri* under exposure to different concentrations (0, 1, 10,

20, 50, and 100 mg/L) of PS NPs (a–f) and PS-NH $_2$ NPs (g–l).

Fig. S4 EPS content and composition of *P. stutzeri* under the exposure to PS NPs and PS-NH₂ NPs.

Fig. S5 Infrared spectra of EPS in *P. stutzeri* under the exposure to PS NPs and PS-NH₂.

References

Text S1. Preparation of PS NPs.

PS NPs were synthesized by emulsion polymerization ^{1,2}. Specific operations were as follows: 0.08 g of C₁₂H₂₅NaSO₄, 0.11 g of NaHCO₃, 125 mL of deionized water, and 6 mL of purified styrene were added into a 250 mL three-necked flask. Then the mixture was thoroughly blended and assembled onto the reaction apparatus. N₂ was continuously energized, the stirring speed was controlled at 300 r/min, and the water bath heating was started. Start timing when the water bath temperature reached 75°C and at the 30th minute, 20 mL of 5.5 g/L aqueous ammonium persulfate solution was added, and the reaction was continuous for 5 h. The flask was rapidly cooled after the reaction. The cooled emulsion was transferred to a dialysis bag for dialysis for more than 48 h to remove the residual reactants. The dialyzed nanoplastic emulsion was stored at 2-8°C.

Text S2. Strain rejuvenation

Pseudomonas stutzeri (*P. stutzeri*) was inoculated into tryptone soy agar (TSA) medium and placed in a constant temperature oscillation incubator at 150 rpm, 28°C for 24 h. Then the bacterial solution was mixed with an equal volume of 50% (v/v) sterile glycerol, and partitioned into 1.5 mL sterile freezing tubes to make glycerol bacterium, and the preserved glycerol bacterium was inoculated into TSA medium at 1% (v/v), placed in a constant temperature shaking incubator at 150 rpm and 28°C for 24 h to facilitate revitalization. and then centrifuged at 4000 rpm and 4°C for 10 min to collect the precipitate of *P. stutzeri*. *P. stutzeri* was resuspended with 0.01 M neutral phosphate buffered solution (PBS) and the cell density OD₆₀₀ of the suspension was adjusted to approximately 1.0. The resulting suspension was used for subsequent inoculation.

Text S3. Compositions of mediums.

Tryptone Soy Agar (TSA) Medium: The TSA medium per litre used for the experiment was formulated as 15.0 g tryptone, 5.0 g soy peptone and 5.0 g NaCl, and the pH was adjusted to 7.0-7.5 with 1 mol/L HCl or NaOH solution. Then the medium was fixed in purified water and dispensed into conical flasks, autoclaved at 121°C for 30 min. The solid medium was prepared by adding 15.0 g/L agar powder to this formula, and then dispensed into petri dishes after autoclaving.

Denitrification (DN) medium: the DN medium per liter used for the experiment was formulated as 0.72 g KNO₃, 3.0 g C₆H₁₂O₆·H₂O, 4.78 g Na₂HPO₄·12H₂O, 1.24 g NaH₂PO₄·2H₂O, 4.0 g NaCl and 3 mL of trace element solution. Where the trace elements per liter were formulated as 3.01 g MgSO₄·7H₂O, 3.36 g MnSO₄·H₂O, 1.12 g H₃BO₃, 3.00 g ZnSO₄·7H₂O, 0.30 g FeSO₄·7H₂O, 0.6 g CaCl₂.

	Partical size	Zeta potential	Solid content of emulsion
	(nm)	(mV)	(mg/mL)
PS NPs	85.2 ± 2.3	-24.8 ± 3.2	27.5
PS-NH ₂ NPs	93.2 ± 1.5	19.0 ± 0.8	25.0

Table. S1 Characteristics of PS NPs and PS-NH $_2$ NPs.

composition C 1s peak functional group relative conte	ent (%)
Groups (molar ratio to C)	
C-(C, H) C-(O, N) C=O/	0-C-O
284.08 eV 285.80 eV 287.	67 eV
1 0.11 0.063 80.16 17.91 1	.94
2 0.38 0.021 77.65 18.86 3	.49
3 0.38 0.049 74.67 22.86 2	.47
4 0.13 0.061 63.92 21.34 14	1.74
5 0.14 0.029 68.08 16.22 15	5.70

Table. S2 C, O, N and functional group composition in the EPS of *P. stutzeri*.

Note: Subgroups 1-5 represent the control group, PS 10 mg/L, PS 50 mg/L, PS-NH₂ 10 mg/L, PS-NH₂ 50 mg/L, respectively.

Fig. S1 FTIR spectra of PS NPs and PS-NH $_2$ NPs.

Fig. S2 SEM image of PS NPs (a) and PS-NH $_2$ NPs (b).

Fig. S3. SEM images of *P. stutzeri* under exposure to different concentrations (0, 1, 10, 20, 50, and 100 mg/L) of PS NPs (a–f) and PS-NH₂ NPs (g–l).

Fig. S4 EPS content and composition of *P. stutzeri* under the exposure to PS NPs and

PS-NH₂ NPs.

Fig. S5 Infrared spectra of EPS in P. stutzeri under the exposure to PS NPs and PS-

NH₂ NPs.

References

- L. J. Feng, Y. Shi, X. Y. Li, X. D. Sun, F. Xiao, J. W. Sun, Y. Wang, X. Y. Liu, S. G. Wang and X. Z. Yuan, Behavior of tetracycline and polystyrene nanoparticles in estuaries and their joint toxicity on marine microalgae *Skeletonema costatum Environ. Pollut.*, 2020, 263, 114453.
- H. X. Li, S. S. Xu, S. Wang, J. X. Yang, P. Yan, Y. P. Chen, J. S. Guo and F. Fang, New insight into the effect of short-term exposure to polystyrene nanoparticles on activated sludge performance, *J. Water Process Eng.*, 2020, 38, 101559.