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Text S1. Reagents

Peroxymonosulfate (PMS), sodium hydroxide (NaOH), ciprofloxacin (CIP), 

Potassium iodide (KI), Tetracycline (TC), Rhodamine B (RhB), Metronidazole (MNZ), 

sodium bicarbonate (NaHCO3), sodium persulfate (Na2S2O8), bismuth nitrate 

pentahydrate (Bi(NO3)·5H2O), dilute nitric acid (HNO3), sodium chloride (NaCl), 

sodium sulfate (Na2SO4), sodium nitrate (NaNO3), humic acid (HA), methanol (MA), 

tert-butyl alcohol (TBA), p-benzoquinone (BQ), L-histidine (L-His), and sodium 

oxalate (Na2C2O4) and copper acetate monohydrate (Cu(CH3COO)2·H2O) were 

purchased from Sinopharm Chemical Reagent Co. Ltd. Sodium bismuthate 

(NaBiO3·2H2O) was synthesized according to the previous study as described in Text 

S2 of Supporting Material. All reagents did not require further purification.

Text S2. Synthesis of NaBiO3·2H2O

20 mM of Bi(NO3)3∙5H2O was added to 50 mL of 1 M HNO3, and the mixture 

was stirred for a certain period of time. Subsequently, 18 mM Na2S2O8 was 

introduced, and the solution was stirred for 1 h. Afterward, 10 M NaOH was added, 

and the solution was thoroughly mixed. The resulting mixture was then heated in a 

90°C water bath for 1 h. Finally, the NaBiO3 product was collected by centrifugation 

after washing with water.

Text S3. Measurement the concentration of PMS

The concentration of PMS in reaction system was detected through a color method 

of iodine. Specifically, the standard solution of PMS with different concentrations was 

added into 5 mL solution A containing 0.20 g NaHCO3, 4.00 g KI and 40 mL ultrapure 

water. After 15 min, the absorbance of mixture solution at λ =352 nm was examined by 

a UV–vis spectrophotometer for a standard curve. And then, the 1 mL sample was also 

added into 5 mL solution A and tested with the same procedure.

Text S4. ESR measurements

To investigate the spin trapping ESR spectra of •OH, SO4
•‒, and O2

•‒ and 1O2, 2 mg 

of catalyst and 2 mg of PMS were added to 100 mL of CIP aqueous solution (5 mg/L) 

to detect •OH and SO4
•‒ radicals, or to methanol-based CIP solution (5 mg/L) to detect 

O2
•‒ radicals. Subsequently, 1 mL of the reaction solution was collected at specific time 
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intervals, filtered using a 0.22 μm filter, and then 20 μL of 5,5-dimethyl-1-pyrroline N-

oxide (DMPO) was added to the filtered solution, shaken for 1 min, and transferred to 

a capillary tube for EPR detection. To detect 1O2, 100 μL of 2,2,6,6-

Tetramethylpiperidine (TEMP) was added to the filtered solution, shaken for 1 min, 

and then analyzed in a capillary tube.

Text S5. Theory calculations

Density functional theory (DFT) calculations were carried out using the Vienna Ab-

initio Simulation Package (VASP) with the Projector Augmented Wave (PAW) 

method.1,2 A cutoff energy of 400 eV was used for the plane-wave basis. Surface atoms 

were allowed to relax until forces were below 2 × 10-2 eV/Å, and the energy change per 

atom was under 10-5 eV/atom, completing both ionic and electronic relaxations. To 

eliminate periodic boundary effects, a 20 Å vacuum layer was added in the z-axis. 

Additionally, we employed the DFT+U method to address the localized nature of Cu 

3d electrons in the Cu-doped BiO2-x system, with a U value of 4.0 eV for the Cu 3d 

orbitals. 3,4 The adsorption energies of PMS on the catalyst surface were calculated 

using Eq. 1:

Eads =  Ecatalyst/PMS ‒ EPMS ‒ Ecatalyst (1)

where , , and  represent the total energy of PMS adsorbed on Ecatalyst/PMS EPMS Ecatalyst

the catalyst, free PMS, and the catalyst itself, respectively. 

DFT calculations by Gaussian 09 software at B3LYP/6-31+G**= (d, p) level was 

performed to figure out the nucleophilic and electrophilic attack on the molecular 

structure of CIP. Based on the wave function, Multiwfn 3.8 software was used to 

analyze the visualization of the highest occupied molecular orbital (HOMO), calculated 

DD (b) and f, and Fukui index.5,6
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Fig. S1. Schematic diagram of preparing Cu doped BiO2-x.
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Fig. S2. Raman spectra of BiO2-x and CBO-1.
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Fig. S3. ESR spectra of BiO2-x and CBO-1.
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Fig. S4. SEM images of (a) BiO2-x and (b) CBO-1.
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Fig. S5. BET spectra of BiO2-x and CBO-1.
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Fig. S6. Tafel curves of BiO2-x and CBO-1.



10

(a) (b)

-20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

C
/C

0

Time (min)

 0.01 g CBO-1+0.02 g PMS
  0.02 g CBO-1+0.02 g PMS
  0.03 g CBO-1+0.02 g PMS

Light
PMS

-20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

 0.02 g CBO-1+0.01 g PMS
  0.02 g CBO-1+0.02 g PMS
  0.02 g CBO-1+0.03 g PMS

Light
PMS

Time (min)

C
/C

0

Fig. S7. (a) Effect of different dosages of CBO-1, (b) PMS concentration on the CIP 

degradation in the CBO-1/PMS/Vis system. 
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Fig. S8. (a) Effect of initial pH on the CIP degradation in the CBO-1/PMS/Vis system 

and (b) Zeta potential of CBO-1 at different pH levels.
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Fig. S9. Effect of inorganic anions and dissolved organic matter on the CIP 

degradation in the CBO-1/PMS/Vis system.
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Fig. S10. CIP concentration in CBO-1/PMS/Vis system with different initial CIP 
concentrations.
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Fig. S11. Efficiency of CBO-1/PMS/Vis degradation of CIP under actual water 
environment background.
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Fig. S12. (a) Cycle experiments of CIP degradation in CBO-1/PMS/Vis system and 

(b) XRD patterns of fresh and used (five cycles) CBO-1.



16

(a)

(b)

(c)

(d)

(e)

(f)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

k o
bs

(m
in

-1
)

BiO2-x+PMS+Vis CBO-1+PMS+Vis

0.01417

0.16156

0.000

0.005

0.010

0.015

0.020

0.025

k o
bs

(m
in

-1
)

BiO2-x+PMS+Vis CBO-1+PMS+Vis

0.01561

0.016156

-20 0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

C
/C

0

Time (min)

 BiO2-x

 CBO-1
PMS
Light

MNZ

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

k o
bs

(m
in

-1
)

BiO2-x+PMS+Vis CBO-1+PMS+Vis

0.01015

0.0167

-20 0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

C
/C

0

Time (min)

 BiO2-x

  CBO-1

PMS
Light

TC

-20 0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

C
/C

0

Time (min)

 BiO2-x

 CBO-1
PMS
Light

RhB

Fig. S13. (a) Degradation of RhB and (b) their corresponding reaction kinetics under 
CBO-1/Vis system and BiO2-x/Vis system. (c) Degradation of MNZ and (d) their 

corresponding reaction kinetics under CBO-1/Vis system and BiO2-x/Vis system. (e) 
Degradation of TC and (f) their corresponding reaction kinetics under CBO-1/Vis 

system and BiO2-x/Vis system.
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Fig. S14. In the CBO-1/PMS/Vis system, the degradation curves of CIP by different 
concentrations of quenchers are shown as follows: (a) methanol, (c) n-butanol, (e) p-
benzoquinone, (h) L-histidine, and (j) sodium oxalate, and corresponding degradation 
rate graphs: (b) methanol, (d) n-butanol, (f) p-benzoquinone, (i) L-histidine, and (k) 

sodium oxalate.
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Fig. S15. (a) CIP degradation by CBO-1/PMS/Vis system in different atmosphere and 
(b) their corresponding reaction kinetics.
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Fig. S16. HR-XPS spectra of Cu 2p (insect: Auger spectrum of Cu) of fresh and used 
CBO-1.
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Fig. S17. Mass spectrum of the identified intermediates of CIP degradation.
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Table S1. Comparative studies on the photocatalytic degradation performance of 
CIP by photoactivated PMS

Samples
Reaction 

conditions
Light source

Degradation 
rate

Ref.

Cu doped BiO2-x

CIP: 5 mg/L, 
100 mL; 

Photocatalyst: 
0.2 g/L;

PMS: 0.2 g/L

420 nm; 100 W 0.0607 min-1 This work

BiVO4

CIP: 10 mg/L, 
100 mL; 

Photocatalyst: 
0.32 g/L;

PMS: 0.96 g/L

≥420 nm; 0.0565 min-1 7

Cu0.84Bi2.08O4

CIP: 40 mg/L, 
40 mL; 

Photocatalyst:  
1 g/L;

PDS: 1 mM

420 nm;  
Xenon lamp; 

300 W
0.0102 min-1 8

BiO1-xBr/

Bi2O2CO3

CIP: 40 mg/L, 
50 mL; 

Photocatalyst:  
1 g/L

420 nm;  
Xenon lamp; 

500 W
0.01551 min-1 9

C3N4/MnFe2O4-G

CIP: 20 mg/L, 
50 mL; 

Photocatalyst:  
1 g/L;

PS: 10 mM

400 nm;  
Xenon lamp; 

300 W
0.043 min−1 10

MIL-68(In,Bi)-
NH2@BiOBr

CIP: 10 mg/L, 
100 mL; 

Photocatalyst:  
0.25 g/L;

≥420 nm; 
Xenon lamp; 

300 W
0.02516 min-1 11

BiOBr

CIP: 5 mg/L,  
40 mL; 

Photocatalyst:  
0.5 g/L;

 420 nm; 
Halogen lamp ; 

400 W
0.0272 min-1 12

g-C3N4/Ti3C2

CIP: 20 mg/L, 
50 mL; 

Photocatalyst:  
0.2 g/L;

Xenon lamp; 
500 W

0.035 min-1 13
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Co doped BiOCl

BPA: 10 mg/L, 
30 mL; 

Photocatalyst: 
0.2 g/L

≥420 nm; 
Xenon lamp; 

500 W
0.021 min−1 14

Cu doped BiO2-x

BPA: 50 mg/L, 
100 mL; 

Photocatalyst: 
0.75 g/L

770-860 nm; 
100 W

0.047 min-1 15

Bi2O4/Bi4O7/BiO2-

x

BPA: 40 mg/L, 
40 mL; 

Photocatalyst: 
0.4 g/L

850 nm; LED 
light; 100 W 

0.0081 min−1 16

BiOI/TiO2

CIP: 1 mg/L,  
30 mL; 

Photocatalyst:  
1 g/L;

PMS: 0.25 mM

≥420 nm; 
Xenon lamp; 

500 W
0.023 min−1 17
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