Upcycling plant waste: Iron nanoparticles synthetized from Cannabis sativa

enhance biomass and antioxidative properties in soybean (Glycine max)

Milica Pavlicevic^{*},^a Shital Vaidya,^a Terri Arsenault,^a Anuja Bharadwaj,^a Nubia Zuverza-Mena,^a Craig Musante,^a Yingxue Yu,^b Itamar Shabtai,^b Joseph Liquori,^c Jose A. Hernandez-Viezcas,^d Vinka Oyanedel-Craver,^e Jorge L Gardea-Torresdey,^d Christian O. Dimkpa,^a and Jason C. White^a

Supplementary Material

Table S1: Wavenumber range assigned to different bonds and compounds

Wavenumber range	Bonds	Compounds
3591 – 3221	O-H stretching	Alcohols, phenols
3169 - 3013	C-H stretching	Aromatics
2989 - 2805	C-H stretching	Alkanes
1751 - 1703	C=O stretching	Esters
1740 - 1711	H–C=O: C–H stretching	Aldehydes
1628 - 1579	C-C stretching (in ring)	Aromatics
1476 - 1316	C-H bending and C-H rocking	Alkanes
1346 - 1305	C-O-C stretching	Ethers
1268 - 1132	C-N stretching	Aliphatic amines
911 - 822	C-O bend	Carboxylic acids

Table S2: Composition of extract from Cannabis sativa ssp. sativa and Cannabis sativa ssp. indica

Compounds present in both extracts	Compounds present in extract from <i>Cannabis</i> sativa ssp. sativa	Compounds present in extract from <i>Cannabis sativa</i> ssp. <i>indica</i>

Compound	Target response	Compound	Target response	Compound	Target response
					response
Bicyclo[3.1.1]hept-2-ene	6332.3s; 12529.1i	alpha-Gurjunene 42224 Alloaromadendrene		52840	
Caryophyllene	114662s; 61714i	Guaiol 157841 Eudesma-3,7(11)-diene		15566.5	
(E)-beta-Famesene	132968s; 241704i	10-epi-gamma-eudesmol	137041	gamma-Selinene	106021
beta-Bisabolene	47549s; 2156i	1H-4- Oxabenzo(f)cvclobut(cd)inden-8-	589	1,5-Cyclodecadiene	117654
alpha-Humulene	105920s; 45452i	ol		Ethyl 9-hexadecenoate	5083.1
alpha-Bisabolol	661806s; 162137i	Ethyl (E)-3-fluoro-2- [(trimethylsilyl)methyl]-2-	3145	Methyl stearate	16474.1
2-(4a,8-dimethyl-1, 2,3,4,4a,5,6,8a-	3321s;1945i	butenoate		8,11-Octadecadienoic acid	24821
octahydro-2- naphtalenyl)-2-propanol		Octacosane		1-Amino-3,4-dihydro-3-methyl-4- phenyl-2-naphthalenecarbonitrile	1078
	205645- 52200	Squalene	3284899		
2-Naphthalenemethanol	2056155; 533091	Docosane	15036	4-(2-furyi)-6-(1-piperidinyi)-1,3,5- triazin-2-ylamine	692
Benzoic acid	51629S; 296751	Valencene	2341	3-Chloroformanilide	
Hexadecanoic acid	330775; 348491	(+)-Aromadendrene 30486 Geranyl linalool isomer		Geranyl linalool isomer	112173
9,12,15- Octadecatrienoic acid	3820s; 8294i	8-hydroxy-1-methoxycarbonyl-	895	benzo[a]phenanthridin-8(7H)-one	172735
Phytol		5,6,7,8-tetrahydronaphtalene		1H-Indole-3-butanoic acid	400459
Octadecanoic acid	183491s; 17398i	(3E)-4-(1,2-Epoxy-2,6,6- trimethylcyclohexyl)-3-buten-2-		4,4-Dimethyl-13-alpha-androst-5-	407389
Dronabiol	17949.5s; 6065.5i	on-ethylenacetal	9885	ene	210197
Cannabichromene	61812s; 43933i	1H-Cycloprop[e]azulene	689	5H,10H-Diimidazo[1,5-a:1',5'- d]pyrazine-5,10-dione	
тнс	2465125s; 33027195i	Linoleic acid ethyl ester	20218	ethyl 2-(2-methyl-1-	158295
CBD	8806414s; 18968384i	6-acetyl-7-hydroxy-2,2- dimethylbenzopyran	7913	hexenyl)indole-3-carboxylate	183809
Naphtalene		7-(his(4-		4-Cyclohexyl-2-methyl-1-(4- methylphenyl)-6-phenyl-5-(3-	
6H-Dibenzo[b,d]pyran-1-	5369s; 1876339i	methoxyphenyl)methylene)-7H-	8765	propynyl)-1,2-dihydropyrimidine	97456
ol	1610836s; 424977i	n Octubestenhenens		1,3,5,7,9,11,13,15,17,19,21,23-	
2H-1-benzopyran-5-ol	64455s; 622i	p-Octylacetophenone	58613		186800
Nonanoic acid	34s; 46i	(Jmine 8 (4) nitronhonyl)	427237	cic-5 6 62 11 12 122-Hevabydro-	
2,6,10,14,18,22- tetracosabexane	95417s; 208253i	2,3,4,6-tetrahydropyrido[2,1-	173639	5,11-dimethylpentaleno[2.1-b:5,4-	2638072
Anthracene	82307s; 57453i	bonzoul 6.7 diseath and 4		beta-Amvrin	102363
Neophytadiene	20584s; 7386i	2-penzoyi-6,7-aimethoxy-4- methylidene-2H-1,3-	3125		191026
	49180s; 43544i	penzothiazine		αιριτά-Απιγιπ	105367
Vildmin E	8914s;3524i	5,10-seco-3'H- cyclopropa[2_3]cholestan-1(10)-		12-Oleanen-3-yl acetate	
Campesterol				Morphinan	1870

Stigmasterol	997647s; 389939i	en-5-one	12895	Urs-12-en-24-oic acid	60408
Propanol	12028s; 14348i	1-Triacontanol	906	Methyl 8-hydroxy-3,6-dimethoxy-	185784
Limonene	59030s; 73632i	Cholest-5-en-3-ol		carboxylate	47142
1-Hydroxy-2-propanone	5464s; 6875i	alpha-Eudesmol	463729	Myrcene	
1-Dodecene	60114s; 12704i	Cannabicitran	25281	4-dodecyne	3255
Elemene	6070s; 6632i	2,2,3,3-tetrafluoro-5-(1,1,2,2,	488468		172735
(23S)-ethylcholest-5-en-	463729s; 303939i	dihydrobenzofuran	57672066		
5-Deta-01	2879s;7312i				
lonone	3291s; 14058i				
Glycerin	18/1321s: 282395i				
4-Vinylphenol	1045213, 2025551				
Dibenz[h d]cyclohentane	32346s; 3205i				
	6953s; 53343i				
Resorcinol	1811705s; 34168				

s-ssp. sativa; i- ssp. indica; THC-Tetrahydrocannabinol; CBD-Cannabidiol.

Table S3: Zeta potential, hydrodynamic diameter and dry size of nanoparticles synthesized using Cannabis sativa ssp. sativa (Fe

NP-S) and Cannabis sativa ssp. indica (Fe NP-I)

Sample	Hydrodynamic diameter (nm)	Zeta potential (mV)	Dry size (nm)

Fe NP-S	1739 ± 146	+4.3 ± 0.1	25.4 ± 3.5
Fe NP-I	164 ± 47	- 27.2 ± 0.2	9.7 ± 2.1

sativa; B- Iron nanoparticles synthesized from Cannabis sativa ssp. indica

Figure S2. Dissolution analysis of iron nanoparticles. Fe NP-S - Iron nanoparticles synthesized from *Cannabis sativa* ssp. *sativa*; Fe NP-I- Iron nanoparticles synthesized from *Cannabis sativa* ssp. *Indica;* Fe commercial NP - commercially available iron oxide nanoparticles

Figure S3. Changes in normalized antioxidant content in soybean exposed to Fe NPs (as detected by ABTS assay). A- Experiment with iron nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; B- Experiment with iron nanoparticle synthesized from *Cannabis sativa* ssp. *indica* extract. Fe NP-S - Fe nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; Fe commercial- commercial Fe₂O₃ nanoparticles; extract sativa- *Cannabis sativa* ssp. *sativa* extract; extract indica- *Cannabis sativa* ssp. *indica* extract. Different letters indicate that samples were statistically different (as determined by Tukey test at p < 0.05).

Figure S4. Changes in normalized plant cell viability in soybean exposed to Fe NPs. A- Experiment with iron nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; B- Experiment with iron nanoparticle synthesized from *Cannabis sativa* ssp. *indica* extract. Fe NP-S - Fe nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; Fe commercial- commercial Fe₂O₃ nanoparticles; extract sativa- *Cannabis sativa* ssp. *sativa* extract; extract indica- *Cannabis sativa* ssp. *indica* extract. Different letters indicate that samples were statistically different (as determined by Tukey test at p < 0.05).

Figure S5. Changes in normalized total polyphenolic content in soybean exposed to Fe NPs. A- Experiment with iron nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; B- Experiment with iron nanoparticle synthesized from *Cannabis sativa* ssp. *indica* extract. Fe NP-S - Fe nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; Fe commercial- commercial Fe₂O₃ nanoparticles; Fe NP-I - Fe nanoparticles synthesized from *Cannabis sativa* ssp. *indica* extract; extract sativa- *Cannabis sativa* ssp. *sativa* extract; extract indica- *Cannabis sativa* ssp. *indica* extract. Different letters indicate that samples were statistically different (as determined by Tukey test at p < 0.05).

Figure S6. Changes in normalized malondialdehyde content in soybean exposed to Fe NPs. A- Experiment with iron nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; B- Experiment with iron nanoparticle synthesized from *Cannabis sativa* ssp. *indica* extract. Fe NP-S - Fe nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; Fe commercial- commercial Fe₂O₃ nanoparticles; extract sativa- *Cannabis sativa* ssp. *sativa* extract; extract indica- *Cannabis sativa* ssp. *indica* extract. Different letters indicate that samples were statistically different (as determined by Tukey test at p < 0.05).

Figure S7. Changes in normalized glutathione content in soybean exposed to Fe NPs. A- Experiment with iron nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; B- Experiment with iron nanoparticle synthesized from *Cannabis sativa* ssp. *indica* extract. Fe NP-S - Fe nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; Fe commercial- commercial Fe₂O₃ nanoparticles; extract sativa- *Cannabis sativa* ssp. *sativa* extract; extract indica- *Cannabis sativa* ssp. *indica* extract. Different letters indicate that samples were statistically different (as determined by Tukey test at p < 0.05).

Figure S8. Changes in normalized catalase activity in soybean exposed to Fe NPs. A- Experiment with iron nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; B- Experiment with iron nanoparticle synthesized from *Cannabis sativa* ssp. *indica* extract. Fe NP-S - Fe nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; Fe commercial- commercial Fe₂O₃ nanoparticles; extract sativa- *Cannabis sativa* ssp. *sativa* extract; extract indica- *Cannabis sativa* ssp. *indica* extract. Different letters indicate that samples were statistically different (as determined by Tukey test at p < 0.05).

Figure S9. Changes in normalized peroxidase activity in soybean exposed to Fe NPs. A- Experiment with iron nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; B- Experiment with iron nanoparticle synthesized from *Cannabis sativa* ssp. *indica* extract. Fe NP-S - Fe nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; Fe commercial- commercial Fe_2O_3 nanoparticles; extract sativa- *Cannabis sativa* ssp. *sativa* extract; extract indica- *Cannabis sativa* ssp. *indica* extract. Different letters indicate that samples were statistically different (as determined by Tukey test at p < 0.05).

Figure S10. Translocation factor of Fe NPs in soybean. A- Experiment with iron nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; B- Experiment with iron nanoparticle synthesized from *Cannabis sativa* ssp. *indica* extract. Fe NP-S - Fe nanoparticles synthesized from *Cannabis sativa* ssp. *sativa* extract; Fe commercial- commercial Fe₂O₃ nanoparticles; extract sativa- *Cannabis sativa* ssp. *sativa* extract; extract indica- *Cannabis sativa* ssp. *indica* extract. Different letters indicate that samples were statistically different (as determined by Tukey test at p < 0.05).