Supporting information for Colorimetric Visualization Detection of Perfluorooctanoic Acid Based on Host-Guest Interactions with Cyclodextrin-Modified Gold Nanoparticles

Jiateng Ma¹, Chuang Liu², Jiali Li², Zhiquan An¹, Bihong Zhang¹, Wenjun Hong¹, Cheng Ye⁴, Minjie Li¹*, Liang-Hong Guo^{1,3}*

¹College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou,

Zhejiang 310018, China

²College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018,

China

³ School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

⁴Zhejiang Jiaoke Environment Technology Co, Ltd, Hangzhou, Zhejiang 311305, China

Corresponding Authors E-mail address: minjieli@pku.edu.cn (M. Li), lhguo@ucas.ac.cn (L. H. Guo)

Figure S2. (A) The FTIR spectra of pristine α-CD and α-CD@AuNPs. (B) The FTIR spectra of pristine β-CD and β-CD@AuNPs.
(C) The FTIR spectra of pristine γ-CD and γ-CD@AuNPs. (D) XPS spectra of α-CD@AuNPs.
(E) C 1s. (F) Au 4f. (G) XPS spectra of β-CD@AuNPs.(H) C 1s.(I) Au 4f. (J) XPS spectra of γ-CD@AuNPs.
(K) C 1s. (L) Au 4f.

Figure S3. Optimization of assay conditions. (A-C) Effects of feed ratio of α -CD@AuNPs, β -CD@AuNPs and γ -CD@AuNPs. (PFOA(200 \mu M)).

Figure S4. Stability chart of CD@AuNPs for detecting PFOA. (A) α -CD@AuNPs. (B) β -CD@AuNPs. (C) γ -CD@AuNPs. The absorbance ratio A520nm/A520nm was measured across six replicates to evaluate the stability of the nanoparticles.