Supporting Information

Development of a Fluidized Bed Reactor for Phosphorus Recovery from Rubber Industry Wastewater through Struvite Formation: Material Selection and Prototype

Danai Maddewor ^a, Patiya Kemacheevakul ^{a,b,*}, Nipaphan Phungsombun ^c, Pongsavat Savatdipap ^c, and Surawut Chuangchote ^{b,d}

- ^a Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- ^b Research Center of Advanced Materials for Energy and Environmental Technology (MEET), King Mongkut's University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- ^c Sahaviriyah Steel Industries (PCL), 28/1 Prapawit Building, Surasak Road, Silom, Bangrak, Bangkok 10500, Thailand
- ^d Department of Tool and Materials Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand

Parameter	Value	Unit	Difference (%)*
рН	4.95±0.20	-	2.97
Reactive phosphorus	193.80±5.27	mg/L as PO_4^{3-} -P	3.14
Ammonium	1746.02±12.88	mg/L as NH ₄ -N	2.42
Magnesium	99.75±0.01	mg/L as Mg	1.37
Calcium	34.70±0.00	mg/L as Ca	1.70

Table S.1 The characteristics of the synthetic treated rubber industry wastewater.

*The value of synthetic wastewater which was different from the value of actual wastewater (%).

Material	Ra (nm) *	
Stainless steel	0.0555 ± 0.0191	
Acrylic	0.0168 ± 0.0010	
Epoxy resin fiberglass	0.3105 ± 0.0685	
Vinyl ester resin		
fiberglass	0.3483 ± 0.0637	
Aluminium	0.1403 ± 0.0153	
Galvanized steel	0.2810 ± 0.0333	

Table S.2 The arithmetic average roughness (Ra) of the materials investigated by AFM.

* The testing distance from AFM analysis was 10 µm.

Figure S1. SEM images (500x) of struvite crystals from treated rubber industry wastewater at different pH values: (a) pH 7.5, (b) pH 8, (c) pH 8.5, (d) pH 9, and (e) pH 9.5.

Figure S2. SEM images (500x) of struvite crystals from treated rubber industry wastewater at different Mg:P molar ratios: (a) 0.66:1, (b) 1.0:1, (c) 1.1:1, (d) 1.2:1, (e) 1.3:1, and (f) 1.5:1.

Figure S3. Materials before testing: stainless steel, acrylic, epoxy resin fiberglass, vinyl ester resin fiberglass, aluminum, and galvanized steel (left to right).

Figure S4. Contact angle images and average contact angle values of various materials.

Figure S5. XRD patterns of scales on acrylic.

Figure S6. XRD patterns of scales on epoxy resin fiberglass.

Figure S7. XRD patterns of scales on vinyl ester resin fiberglass.

Figure S8. XRD patterns of scales on aluminum.

Figure S9. Materials after testing at 24 h: stainless steel, acrylic, epoxy resin fiberglass, vinyl ester resin fiberglass, aluminum, and galvanized steel (left to right).

Figure S10. Energy-dispersive X-ray spectroscopy (EDS) mapping images of scales on acrylic, including (a) SEM image, (b) O element, (c) Mg element, (d) P element, (e) Ca element, and (f) N element.

Figure S11. Energy-dispersive X-ray spectroscopy (EDS) mapping images of scales on epoxy resin fiberglass, including (a) SEM image, (b) O element, (c) Mg element, (d) P element, (e) Ca element, and (f) N element.

Figure S12. Energy-dispersive X-ray spectroscopy (EDS) mapping images of scales on vinyl ester resin fiberglass, including (a) SEM image, (b) O element, (c) Mg element, (d) P element, (e) Ca element, and (f) N element.

Ca Ka1

Figure S13. Energy-dispersive X-ray spectroscopy (EDS) mapping images of scales on aluminum, including (a) SEM image, (b) O element, (c) Al element, (d) P element, (e) N element, (f) Mg element, (g) Ca element.

Figure S14. Energy-dispersive X-ray spectroscopy (EDS) mapping images of scales on galvanized steel, including (a) SEM image, (b) O element, (c) P element, (d) Fe element, (e) Zn element, (f) N element, (g) Mg element, and (h) Ca element.