Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Cation- π -induced mixed-matrix nanocomposite for detection and removal of Hg²⁺ and azinphosmethyl towards environment remediation

Kamalpreet Kaur[†], Gagandeep Singh[‡], Navneet Kaur^{§,*}, Narinder Singh^{†,*}

[†]Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India

[‡]Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India

§Department of Chemistry, Panjab University, Chandigarh 160014, India

Corresponding author's E-mail: nsingh@iitrpr.ac.in; navneetkaur@pu.ac.in

S.No.	Title				
Figure S1	Synthesis of Ionic liquid (IL)				
Figure S2	HRMS spectrum of KP-1				
Figure S3	HRMS of precursor A				
Figure S4	HRMS spectrum for precursor A				
Figure S5	¹³ C NMR spectra of precursor A				
Figure S6	HRMS spectrum of KP-2				
Figure S7	¹ H NMR spectra of KP-2				
Figure S8	¹³ C NMR spectra of KP-2				
Figure S9	HRMS of IL				
Figure S10	¹ H NMR spectrum of IL				
Figure S11	Composite fabricated membranes				
Figure S12	EDAX spectrum of bare MWCNT				
Figure S13	EDAX spectrum of IL@MWCNTs				
Figure S14	TGA-DSC analysis of MWCNTs				
Figure S15	XPS spectrum of full region				
Figure S16	Peak table showing the atomic % of elements present in the Hg/IL@MWCNTs				
	composite				
Figure S17	Relative intensity ratios of D/G, G'/G, and G'/D peaks of pristine MWCNTs,				
	IL@MWCNTs and Hg/IL@MWCNTs.				
Figure S18	FTIR spectra of IL and IL@MWCNTs+Hg ²⁺				
Figure S19 (A), (B), (C), (D) and (E) Bright field FE-SEM images of Hg/IL@MV					
	Elemental mapping of Hg/IL@MWCNTs and (F) EDAX of Hg/IL@MWCNTs				
Figure S20	(A) Comparative cyclic voltammetry graphs of bare GCE, MWCNTs@GCE,				
	IL/GCE, IL@MWCNTs/GCE and Hg/IL@MWCNTs/GCE, (B) EIS plot and				
	cyclic voltammetry profiles of bare GCE, IL@MWCNTs/GCE and				
	Hg/IL@MWCNTs/GCE at frequency 50 to 3×10 ⁶ Hz, (C) Cyclic voltammetry				
	graphs of bare GCE, IL@MWCNTs/GCE and Hg/IL@MWCNTs/GCE in				
	mixture of 0.1 M KCl consisting $K_3[Fe(CN)_6]$ and $K_4[Fe(CN)_6]$, (D) Comparative				
	profiles of active surface area with differently modified electrodes, (E) Cyclic				
	voltammetry response of Hg/IL@MWCNTs/GCE with varying scan rates from 20				
	to 220 mV/s in a mixture 0.1 M KCl consisting of $K_3[Fe(CN)_6]$ and $K_4[Fe(CN)_6]$				
	solution and (F) Linear regression plot showing relationship between cathodic and				
	anodic peak currents vs square root of scan rate.				
Figure S21	(A) Adsorption capacities of IL@MWCNTs with regard to Hg ²⁺ adsorption and (B)				
	Frendulich adsorption isotherm plots for Hg ²⁺ adsorption onto IL@MWCNTs.				

Figure S22	Leaching study of IL@MWCNTs for Hg ²⁺ ion
Figure S23	Effect of pH on cathodic current after addition of AZM
Figure S24	DPV response of Hg/IL@MWCNTs (A) nitroaromatics; (B) polysaccharides; (C)
	Vitamins and (D) Bar graph showing the stability of response of Hg/IL@MWCNTs
	for AZM detection with number of days.
Figure S25	Mass spectra of degraded AZM products
Figure S26	³¹ P NMR spectrum obtained for AZM in presence of Hg/IL@MWCNTs catalyst in
	DMSO-d ₆ :D ₂ O (35:65 v/v).
Table S1	AZM determination in water
Figure S27	Contact angle measurement
Table S2	Surface area and pore volume of differently modified membranes
Figure S28.	Influence of pH on adsorption kinectics of Hg ²⁺ ion
Table S3	Degradation efficiency of membrane towards AZM
Figure S29.	Fe-SEM image of (A) pristine membrane, (B) PA/IL@MWCNTs membrane and (C)
	after filteration of Hg ²⁺ and AZM.
Figure S30.	Influence of pH on AZM adsorption
Table S4	Comparison with literature reports

Figure S1. Synthesis of organic cation (IL).

Elemental Composition Report

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 54 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 19-19 H: 1-100 N: 1-7 O: 1-8 290823_KK-335 17 (0.197) Cm (17:24) 1: TOF MS ES+ 4.93e+007 335.1509 100-% 240,9882 336 1539 137.0023 162.9741 422.1730 679.5131201.4949 741.4691 997.6003 521.0840 847.2021 0 500 100 200 300 400 600 700 800 900 Minimum: -1.5 5.0 20.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 335.1508 C19 H19 N4 O2 335.1509 0.1 0.3 12.5 1077.4 n/a n/a

> Figure S2. HRMS spectrum of KP-1 HRMS (ESI,m/z): calculated for $C_{19}H_{18}N_4O_2$ [M+1], 335.1508, found 335.1509

Figure S3. HRMS of precursor A HRMS (ESI,m/z): calculated for $C_{23}H_{25}N_4O_4$ [M]⁺, 421.1876, found 421.1872

Figure S4. HRMS spectrum for precursor A

¹**H NMR (400 MHz, DMSO-d6)**- δ 11.19 (s, NH, 1H), 8.92 (d, Ar-H, 2H), 8.26 (d, Ar-H, 2H), 7.38 (d, Ar-H, 1H), 7.31 (d, Ar-H, 1H), 7.07 (t, Ar-H, 1H), 6.97 (t, Ar-H, 1H), 6.75 (s, 1H), 5.52 (s, 2H), 4.13 (q, 2H), 4.00 (m, 2H), 2.46 (s, 3H), 1.14 (m, 6H).

Figure S5. ¹³C NMR spectra of precursor A

¹³C NMR (100 MHz in DMSO-d6) - δ 166.8, 165.1, 160.5, 149.8, 147.3, 145.1, 142.6, 131.6, 126.5, 123.0, 121.3, 117.8, 110.1, 95.1, 62.7, 60.3, 55.1, 51.6, 19.5, 14.5, 14.4.

Figure S6. HRMS spectrum of KP-2

HRMS (ESI,m/z): calculated for C₂₁H₂₆N₆O₃ [M]⁺, 407.1832, found 421.1830

¹H NMR (400 MHz in DMSO-d₆)- δ 9.59 (s, -NH, 1H), 8.82-8.78 (m, Ar-H, 2H), 8.17-8.10 (m, Ar-H, 2H), 7.38-7.35 (t, J= 7.36, Ar-H, 1H), 7.32-7.28 (m, Ar-H, 1H), 7.08-7.05 (t, J= 7.07, Ar-H, 1H), 6.99-6.95 (t, Ar-H, 1H), 6.74 (s, -CH, 1H), 5.55 (s, -NH, 1H), 5.23 (s, CH₂, 2H), 4.53 (d, -NH, 2H), 4.01-3.98 (q, -CH₂, 2H), 2.46 (s, CH₃, 3H), 1.14-1.11 (t, J=1.12, CH₃, 3H).

¹³C NMR (100 MHz in DMSO-d₆)- δ 168.6, 165.1, 164.1, 160.0, 149.7, 147.1, 145.2, 142.6, 131.6, 126.1, 123.1, 121.4, 117.8, 110.2, 95.2, 60.4, 55.0, 19.5, 14.5

Figure S10. ¹H NMR spectrum of IL

¹**H NMR (400 MHz in DMSO-d₆)-** δ 1.17 (s, 3H), 3.59 (s, 1H, -NH), 4.06-4.03 (m, 2H), 5.28 (s, 1H), 6.83-6.81 (d, 1H), 7.03 (t, 1H), 7.11 (t, 1H), 7.36 (t, 2H), 7.45-7.43 (d, 1H), 7.60 (t, 2H), 7.73-7.71 (d, 1H), 8.20-8.19 (d, 2H), 8.94 (3H, s), 11.28 (s, -OH)

Membrane	PA (wt %)	IL@MWCNTs
PA	1.0	0
PA/IL@MWCNTs _{2.5}	1.0	2.5
PA/IL@MWCNTs ₅	1.0	5
PA/IL@MWCNTs _{7.5}	1.0	7.5

Figure S11. Composite fabricated membranes

Figure S12: EDAX spectrum of bare MWCNT

Figure S13: EDAX spectrum of IL@MWCNTs

Figure S14. TGA-DSC analysis of MWCNTs

Figure S15. XPS spectrum of full region

Element	Atomic %
C 1s	70.51
N 1s	9.75
O 1s	16.62
Hg 4f	3.12

Figure S16. Peak table showing the atomic % of elements present in the Hg/IL@MWCNTs composite

Figure S17. Relative intensity ratios of D/G, G'/G, and G'/D peaks of pristine MWCNTs, IL@MWCNTs and Hg/IL@MWCNTs.

Figure S18. FTIR spectra of IL@MWCNTs and IL@MWCNTs+Hg²⁺.

Figure S19. (A), (B), (C), (D) and (E) Bright field FE-SEM images of **Hg/IL@MWCNTs**, Elemental mapping of **Hg/IL@MWCNTs** and (F) EDAX of **Hg/IL@MWCNTs**.

Figure S20. (A) Comparative cyclic voltammetry graphs of bare GCE, MWCNTs@GCE, IL/GCE, IL@MWCNTs/GCE and Hg/IL@MWCNTs/GCE, (B) EIS plot and cyclic voltammetry profiles of bare GCE, IL@MWCNTs/GCE and Hg/IL@MWCNTs/GCE at frequency 50 to 3×10^6 Hz, (C) Cyclic voltammetry graphs of bare GCE, IL@MWCNTs/GCE and Hg/IL@MWCNTs/GCE in mixture of 0.1 M KCl consisting K₃[Fe(CN)₆] and K₄[Fe(CN)₆], (D) Comparative profiles of active surface area with differently modified electrodes, (E) Cyclic voltammetry response of Hg/IL@MWCNTs/GCE with varying scan rates from 20 to 220 mV/s in a mixture 0.1 M KCl consisting of K₃[Fe(CN)₆] and K₄[Fe(CN)₆] solution and (F) Linear regression plot showing relationship between cathodic and anodic peak currents vs square root of scan rate.

Adsorption capacity of Hg²⁺ ions onto IL@MWCNTs

Many current Hg^{2+} sensing probes can only detect the heavy-metal ions, but cannot extract them from solution. In the present work, we endowed **IL@MWCNTs** with adsorptive and separable properties to remove the mercury ions from aqueous solution. To determine the adsorption capacities of the functionalized materials, the **IL@MWCNTs** (5 mg) samples were added to an aqueous solution containing 5, 10, 25, 40, 50, 100, 150 and 200 ppm different concentrations of Hg^{2+} . Then, the solution was stirred for 12 h at a fixed temperature (25 °C). After filtration, the final Hg^{2+} concentrations remaining in aqueous solution were determined with AAS (atomic absorption spectrometry). The equilibrium metal ions adsorption capacity was calculated for each Hg^{2+} sample using the following expression.

$$q_e = (C_o - C_e) \times V/m$$

where q_e is the adsorbent adsorption capacity (mg g⁻¹), C_0 and C_e are the initial and equilibrium concentration of Hg²⁺ ions (mg L⁻¹), *m* is the mass of **IL@MWCNTs**, and *V* is the sample volume (L). The adsorption capacities of IL@**MWCNTs** with regard to Hg²⁺ adsorption are presented in Figure 8. In order to optimize the use of adsorbents, it is important to establish the most appropriate adsorption isotherm. The adsorption results were fitted using Freundlich adsorption isotherm model supporting multilayer adsorption mechanism (**Figure 8B**). The Freundlich adsorption isotherm is expressed as follows:

where q_e represents equilibrium adsorption capacity of membrane, C_e is equilibrium concentration after adsorption, k_F is the Frendulich isotherm constant and n is the heterogeneity factor, respectively. The maximum adsorption capacity for Hg²⁺ is 152.7 mg g⁻¹.

Figure S21. (A) Adsorption capacities of IL@MWCNTs with regard to Hg²⁺ adsorption and (B) Frendulich adsorption isotherm plots for Hg²⁺ adsorption onto IL@MWCNTs.

Figure S22. Leaching study of IL@MWCNTs for Hg²⁺ ion

Figure S23. Effect of pH on cathodic current after addition of AZM

Figure S24: DPV response of Hg/IL@MWCNTs (A) nitroaromatics; (B) polysaccharides; (C) Vitamins and (D) Bar graph showing the stability of response of Hg/IL@MWCNTs for AZM detection with number of days.

Figure S25. Mass spectra of degraded AZM products

Figure S26. ³¹P NMR spectrum obtained for AZM in presence of Hg/IL@MWCNTs catalyst in DMSO-d₆: D_2O (35:65 v/v).

	Conc. of spiked	Found conc. in	Recovery [%]	RSD ^a		
Sample	samples [µM]	samples [µM]				
Tap Water	10	9.63	96.3	0.417		
	20	19.96	99.8	0.247		
	30	29.86	99.5	0.103		
Agriculture run-off	10	10.54	105.4	1.150		
	20	20.11	100.5	1.629		
	30	30.22	100.7	0.527		
River Water	10	9.92	99.2	0.364		
	20	19.32	96.6	1.247		
	30	29.19	97.3	0.721		
^a Measurements of three experiments (n = 3)						

Figure S27: Contact angle measurement

Sample	$S_{BET}(m^2g^{-1})$	V _{total}
PA	6.98	0.29
PA/IL@MWCNTs-2.5	61.31	0.27
PA/IL@MWCNTs-5	74.18	0.23
PA/IL@MWCNTs-7.5	87.68	0.19

Figure S28. Influence of pH on adsorption kinectics of Hg^{2+} ion

Volume of AZM (ml) passed through membrane (PA/IL@MWCNTS/Hg ²⁺) (Adsorbed Hg ²⁺ = 19 mg Membrane = 3×3 cm ²)	Degradation (%)
5 ml	99.50
10 ml	97.80
15 ml	96.50
20 ml	93.50
25 ml	90.60
30 ml	89.70

Figure S29. FE-SEM image of (A) pristine membrane, (B) PA/IL@MWCNTs membrane and (C) after filteration of Hg²⁺ and AZM.

Figure S30. Influence of pH on AZM adsorption

S.No.	Method/Probe	Quantification	Linear range	LOD and	Type of	References
		and		degradation	Real	
		Degradation		%age	sample	
1.	Electrochemical	Quantification	0.5 µM to 60	0.026 mM	Rice	1
	(Cyclic		μM			
	voltammetry)/					
	N/Cu-HPC/GCE					
2.	GC-MS/MS and	Multiresidue	-	10 ng/g	Avocado	2
	LC-MS/MS	analysis			Extract	
3.	Enhanced	Quantification	-	9.04 mgL ⁻¹	Cucumber,	3
	chemilumniscence				Cabbage	
	enzyme linked					
	immunosorbent					
4.	Solar light photo	Detection and	-	-	Clay and	4
	transformation	degradation			goethite	
	and HPLC					
5.	SERS/	Quantification		5 ppm	-	5
	Graphene-AuNRs					
6.	Lumniscence/	Quantification	-	-	Apple and	6
	MOF				Tomato	
					Juice	
7.	Fluorescent	Quantification	1 – 100 µM	5.16 µM	RO water,	7
	chemosensor				Tap Water	
					and Orange	
					Juice	
8.	HPLC-photodiode	Quantification	5-700 μgL ⁻¹	9.6 μg L ⁻¹	Fruit juice,	8
	array/ Fabric				carrot juice	
	phase sorptive				and	
	extraction				wastewater	
9.	Stripping	Quantification	-	$65.87 \ \mu g \ kg^{-1}$	Honey	9
	Voltammetry					
10.	Electrochemical/	Quantification,	0.20 - 180	1.10 µM	River	Present
	IL@MWCNTs	degradation	μΜ		water,	Work
		and removal			agricultural	
					run-off and	

		tap water	

References

1. Q. Wang, H. Zhangsun, Y. Zhao, Y. Zhuang, Z. Xu, T. Bu, R. Li and L. Wang, Macro-meso-microporous carbon composite derived from hydrophilic metal-organic framework as high performance electrochemical sensor neonicotinoid determination, J. Hazard. Mater., 2021, 411, 125122.

N. Chamkasem, L.W. Ollis, T. Harmon, S. Lee, G. Mercer, Analysis of 136 pesticides in avocado using a modified QuEChERS method with LC-MS/MS and GC-MS/MS. J.Agri. Food Chem., 2013, 61, 2315–2329.
B. Liu, Y. Ge, Y. Zhang, Y. Song, Y. Chen, S. Wang, Development of a simplified enhanced chemiluminescence enzyme linked immunosorbent assay (ECL-ELISA) for the detection of phosmet, azinphos-methyl and azinphos-ethyl residues in vegetable samples, Anal. Methods. 2013, 5, 5938–5943.
M. Menager, M. Sarakha, Simulated solar light photo-transformation of organophosphorus azinphos methyl at the surface of clays and goethite. Environ. Sci. Technol. 2013, 47, 765–772.

5. T. Nguyen, Z. Zhang, A. Mustapha, H. Li, M. Lin, Use of Graphene and Gold Nanorods as Substrates for the Detection of Pesticides by Surface Enhanced Raman Spectroscopy, J. Agric. Food Chem. 2014, 62, 43, 10445–10451.

6. D. Singha, P. Majee, S. Mandal, S. Mondal, P. Mahata, Detection of Pesticides in Aqueous Medium and in Fruit Extracts Using a Three-Dimensional Metal–Organic Framework: Experimental and Computational Study, Inorg. Chem. 2018, 57, 19, 12155–12165.

7. M. Bhattu, A. Wani, M. Verma, P. Bharatam, D. Kathuria, J. Gandara, A selective turn-on fluorescent chemosensor 1,1-diaminozine for azinphos-methyl, Journal of photochemistry and photobiology A: Chemistry, 2023, 437, 114476.

 H. Ulusoy, M. Dabbagh, M. Locatelli, S. Ulusoy, A. Kabir, M. Farajzadeh, Azinphos-methyl and chlorfenvinphos pesticides determination using fabric phase sorptive extraction followed by high performance liquid chromatography-photodiode array detector, Microchemical Journal 2023, 191, 108789.
C. Tsiafoulis, C. Nanos, Determination of azinphos-methyl and parathion-methyl in honey by stripping voltammetry, Electrochimica Acta, 2010, 56 (1), 566-574.