Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Minimizing biological sludge generation in a sidestream enhanced biological phosphorus removal (S2EBPR) system: full-scale evaluation and modeling insights

Raffaele Morello^{1,2}, Francesco Di Capua^{3,*}, McKenna Farmer⁴, Patrick Dunlap⁵, Cindy Dongqi Qin⁶, Joseph Kozak⁶, Danilo Spasiano¹, Fabrizio Sabba⁵

¹ Department of Civil, Environmental, Land, Building Engineering and Chemistry,

Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy

² Department of Agricultural and Environmental Sciences (Di.S.A.A.T), University of Bari, via Amendola165/A, 70126 Bari, Italy

³ School of Engineering, University of Basilicata, via dell'Ateneo Lucano 10, Potenza, 85100, Italy

⁴Department of Civil and Environmental Engineering, Northwestern University, Evanston IL, USA

⁵Black & Veatch, KS, USA

⁶ Metropolitan Water Reclamation District of Greater Chicago, IL, USA

*Corresponding author. Email: francesco.dicapua@unibas.it

The following are included as supporting information for this paper:

Number of pages: 6 Number of figures: 1 Number of Tables: 2 **Table S1:** Average influent fractions at the Calumet WRP (as reported also in Sabba et al.¹).

Parameter	Value	Unit
Fraction of VSS/TSS	90.0	%
Fraction of filtered COD (SCCOD, 1.5 µm, incl. colloids) in total COD (TCOD)	36.0	%
Fraction of flocculated filtered (SCOD, wo colloids) COD in total COD (TCOD)	20.0	%
Fraction of VFA in filtered COD (SCCOD, 1.5 µm, incl. colloids)	0.0	%
Fraction of soluble unbiodegradable organics (SU) in filtered COD (SCCOD, 1.5 μ m, incl. colloids)	23.0	%
Fraction of particulate unbiodegradable organics (XU) in total COD (TCOD)	16.0	%
Fraction of heterotrophs (OHO) in total COD (TCOD)	2.0	%
Fraction of endogenous products (XE) of OHOs	7.0	%
Fraction of colloidal unbiodegradable organics (CU) in colloidal COD (SCCOD-SCOD)*	0.0	%
Fraction of NHx in total Kjeldahl nitrogen (TKN)	67.3	%
Fraction of PO4 in total phosphorus (TP)	74.4	%
Fraction of N in readily biodegradable substrate (SB)*	0.0	%
Fraction of N in particulate unbiodegradable substrate (XU)*	0.0	%
Fraction of P in readily biodegradable substrate (SB)*	0.0	%
Fraction of P in particulate unbiodegradable substrate (XU)*	0.0	%

*plant-specific model assumptions

Table S2: SUMO default kinetic parameters used in the model (as reported also in Sabba et al.¹).

	Ordinary heterotrophic organism kinetics (OHO)		
Symbol	Name	Default	Unit
μ _{OHO}	Maximum specific growth rate of OHOs	4.0	d-1
µ _{FERM,OHO}	Fermentation growth rate of OHOs	0.3	d-1
b _{OHO}	Decay rate of OHOs	0.62	d-1
η _{OHO,anox}	Reduction factor for anoxic growth of OHOs	0.60	unitless
K _{SB,AS}	Half-saturation of readily biodegradable substrate for OHOs (AS)	5.0	g COD.m ⁻³
K _{02,OHO,AS}	Half-saturation of O_2 for OHOs (AS)	0.15	g O ₂ .m ⁻³
K _{VFA,AS}	Half-saturation of VFA for OHOs (AS)	0.5	g COD.m ⁻³
K _{MEOL,OHO,AS}	Half-saturation of methanol for OHOs (AS)	0.1	g COD.m ⁻³
K _{NO3,OHO,AS}	Half-saturation of NO ₃ for OHOs (AS)	0.10	g N.m ⁻³
K _{NO2,OHO,AS}	Half-saturation of NO ₂ for OHOs (AS)	0.05	g N.m ⁻³
K _{VFA,FERM,AS}	Half-saturation of VFA in fermentation of OHOs (AS)	50.0	g COD.m ⁻³
Logrange _{VFA,FERM,AS}	Effective range of logistic switch for VFA fermentation by OHOs (AS)	0.012	-
K _{SB,ana,AS}	Half-saturation of readily biodegradable substrate in fermentation by OHOs in mainstream (AS)	5.0	g COD.m ⁻³
K _{SB,ana,DIG}	Half-saturation of readily biodegradable substrate in fermentation by OHOs in digester	350.0	g COD.m ⁻³

	Carbon storing organism kinetics (CASTO: PAO & GAO)		
Symbol	Name	Default	Unit
μ_{CASTO}	Maximum specific growth rate of CASTOs	1.00	d-1
q pao,pp	Maximum polyphosphate uptake rate of PAOs	0.10	d-1
$\mu_{\text{FERM,PAO}}$	Fermentation growth rate of PAOs	0.45	d-1
$\mu_{PAO,lim}$	Maximum specific growth rate of PAOs under P limited	0.49	d-1
b _{CASTO}	Decay rate of CASTOs	0.08	d-1
b _{STC}	Rate of CASTOs maintenance on PHA and GLY	0.07	d-1
b _{PP,ana}	Rate of PAOs maintenance under anaerobic conditions (PP cleavage)	0.01	d-1
q pao,pha	Rate of VFA storage into PHA for PAOs	7.0	d-1
q _{GAO,GLY}	Rate of VFA storage into glycogen for GAOs	4.0	d-1
$\eta_{CASTO,anox}$	Reduction factor for anoxic growth of CASTOs	0.66	unitless
η _{bCASTO,anox}	Reduction factor for anoxic decay of CASTOs	0.50	unitless
$\eta_{bCASTO,ana}$	Reduction factor for anaerobic decay of CASTOs	0.25	unitless
$\eta_{bSTC,anox}$	Reduction factor for anoxic maintenance of CASTOs on PHA and GLY	0.66	unitless
$\eta_{bPP,aer}$	Reduction factor for aerobic maintenance of PAOs on PP	0.25	unitless
$\eta_{bPP,anox}$	Reduction factor for anoxic maintenance of PAOs on PP	0.50	unitless
K _{PO4,PAO,AS}	Half-saturation of PO ₄ for PAOs (AS)	0.30	g P.m ⁻³
Logrange _{PO4,PAO,AS,sat}	Effective range of logistic switch for PO ₄ uptake by PAOs	0.80	-
Logrange _{PP,PAO,AS,sat}	Effective range of logistic switch for PP cleavage by PAOs	0.40	-
K _{PHA,cle}	Half-saturation of PHA for PAOs at PP cleavage	0.10	g COD.g COD ⁻¹
K _{PHA}	Half-saturation of PHA for PAOs	0.01	g COD.g COD ⁻¹
K _{STC}	Half-saturation of PHA and GLY for PAOs	0.10	g COD.g COD ⁻¹
K _{02,CASTO,AS}	Half-saturation of O ₂ for CASTOs (AS)	0.05	g O ₂ .m ⁻³
K _{NO3,CASTO,AS}	Half-saturation of NO ₃ for CASTOs (AS)	0.10	g N.m ⁻³

K _{NO2,CASTO,AS}	Half-saturation of NO ₂ for CASTOs (AS)	0.05	g N.m ⁻³
K _{VFA,CASTO,AS}	Half-saturation of VFA storage for CASTOs (AS)	5.0	g COD.m ⁻³
K _{PP}	Half-saturation of PP for PAOs	0.01	g COD.g COD ⁻¹
Ki _{PP,PAO,max}	Half-inhibition of maximum PP content of PAOs	0.35	g P.g COD ⁻¹
Logrange _{PP,PAO,inh}	Effective range of logistic switch for PP/PAO inhibition term	0.17	-
X _{PP,PAO,min}	PAO PP uptake booster denominator limiting term	0.10	g COD.m ⁻³
Ki _{PHA,PAO,max}	Half-inhibition of maximum PHA content of PAOs	0.60	g COD.g COD ⁻¹
Logrange _{PHA,PAO,inh}	Effective range of logistic switch for PHA/PAO inhibition term	0.10	-
K _{Mg,PAO,AS}	Half-saturation of Mg (counter-ion in PP storage) for PAOs (AS)	0.001	g Mg.m ⁻³
K _{K,PAO,AS}	Half-saturation of K (counter-ion in PP storage) for PAOs (AS)	0.001	g K.m ⁻³
K _{Ca,PAO,AS}	Half-saturation of Ca (counter-ion in PP storage) for PAOs (AS)	0.001	g Ca.m ⁻³
K _{PP,lim}	Half-saturation of PP (nutrient) for PAOs under PO4 limitation (AS)	0.002	g P.m ⁻³
Ki _{PO4,lim,AS}	Half-inhibition of PO ₄ for PAOs under PO4 limitation (AS)	0.005	g P.m ⁻³
Logsat _{ORP,PAO,Half}	Logistic half-saturation of ORP switching in fermentation of PAO	-170.0	mV
Logsat _{ORP,PAO,Slope}	Logistic slope of ORP switching in fermentation of PAO	0.1	mV ⁻¹
$\eta_{bGLY,ana}$	Reduction factor for anaerobic maintenance of GAOs on glycogen	0.10	unitless
K _{GLY}	Half-saturation of glycogen for GAOs (AS)	0.05	g COD.g COD ⁻¹
Ki _{GLY,GAO,max}	Half-inhibition of maximum glycogen content of GAOs (AS)	0.5	g COD.g COD ⁻¹
Logrange _{GLY,GAO,inh}	Effective range of logistic switch for GLY/GAO inhibition term	0.12	-
Switch _{GAO,Act,VFA}	Manual Switch for Activity of VFA Uptake by GAO	0.00	-
Logsat _{ORP,GAO,Half,15}	Half-value of ORP switch of glycogen storage by GAO at 15°C / 59°F	-30	mV
Logsat _{ORP,GAO,Half,25}	Half-value of ORP switch of glycogen storage by GAO at 25°C / 77°F	-110	mV
Logsat _{ORP,GAO,Slope}	Logistic slope of ORP switching of GAOs	0.035	mV ⁻¹

Figure S1: Impact of SRT on effluent OP.

References

1 F. Sabba, M. Farmer, Z. Jia, F. Di Capua, P. Dunlap, J. Barnard, C. D. Qin, J. A. Kozak, G. Wells and L. Downing, Impact of operational strategies on a sidestream enhanced biological phosphorus removal (S2EBPR) reactor in a carbon limited wastewater plant, *Sci. Total Environ.*, 2023, 857, 159280. DOI: **10.1016/j.scitotenv.2022.159280**.