Supplementary Information

A low-cost assay for hydrogen peroxide using sewage sludge-based carbon nanodots

Xiaonan Liu ^{a, b, #}, Long Wang ^{c, #}, Yuling Ye ^c, Zhicheng Pan ^{a, *}, Aijie Wang ^{d, *}, Wei Huang ^{b, e, *}

^a Postdoctoral Research Station of Haitian Water Group Co., Ltd, Chengdu, 610000, People's Republic of China.

^b National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China.

^c Sichuan Engineering Technology Research Center for High Salt wastewater Treatment and Resource Utilization, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China.

^d School of Environment, Harbin Institute of Technology, Harbin, 150000, People's Republic of China.

^e Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, Zigong 643000, People's Republic of China.

These authors contributed equally to this work.

* Corresponding author.

E-mail addresses: panzhicheng107@126.com (Z. Pan), waj0578@hit.edu.cn (A. Wang), weih1025@126.com (W. Huang).

Chemicals and instrumentations

Sewage sludge (water content is 76.87%, volatile suspended solid is 10372 ± 318 mg/L, total suspended solids is 18614 ± 437 mg/L) was obtained from Haitian Water Group Co., Ltd (Zigong, China). ABTS was purchased from Sangon Biotech Co., Ltd. (Shanghai, China). H₂O₂, cupric sulfate (CuSO₄), cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), aluminum chloride (AlCl₃), magnesium sulfate (MgSO₄), lanthanum trinitrate hexahydrate (Fe(NO₃)₂·6H₂O), barium chloride (BaCl₂), nickel chloride (NiCl₂), zinc chloride (ZnCl₂), ferric nitrate nonahydrate (Fe(NO₃)₂·9H₂O), and sodium hypochlorite (NaClO) were obtained from Kelong Chemical Co., Ltd. (Chengdu, China). Silver nitrate (AgNO₃), sodium bicarbonate (NaHCO₃), sodium sulphate (NaCl), potassium chloride (KCl), calcium chloride (CaCl₂), and sodium sulphate (Na₂SO₄) were obtained from Jinshan Chemical Reagent Co., Ltd. (Chengdu, China). Boric acid (H₃BO₃), phosphoric acid (H₃PO₄), acetic acid, perchloric acid (HClO₄), and sodium hydroxide (NaOH) were obtained from Sinopharm Chemical Reagent (Shanghai, China).

Fourier Transform infrared (FT-IR) spectrum of ss-CNDs was recorded with a TENSOR FT-IR spectrum analyzer. Transmission electron microscopy (TEM) images were acquired by FEI Tecnai F20. Ultraviolet-visible (UV-vis) absorption spectra were measured by a spectrophotometer (Hach DR6000). Electron paramagnetic resonance spectrum (EPR) were recorded using a Bruker EMXplus-6/1 electron paramagnetic resonance spectrometer. X-ray photoelectron spectroscopy (XPS) spectra were recorded using a K-Alpha X-ray photoelectron spectrometer. The binding energies were calibrated with respect to the residual C (1s) peak at 284.6 eV.

Fig. S1. EPR spectra obtained in the mixture of DMPO and H_2O_2 in the presence of ss-CNDs.

Fig. S2. UV-vis absorption spectra of the sensing system for H_2O_2 by using ss-CNDs synthesized at three different carbonization temperatures (160°C, 180°C, and 200 °C) as colorimetric probe.

Fig. S3. UV-vis absorption spectra of the sensing system for H_2O_2 by using ss-CNDs synthesized at four different carbonization times (2h, 4h, 6h, and 8h) as colorimetric probe.

Fig. S4. UV-vis absorption spectra of the sensing system for H_2O_2 by using ss-CNDs synthesized at different carbonization temperatures and time (160 °C for 6 h and 200 °C for 6 h) as colorimetric probe.

Fig. S5. UV-vis absorption spectra of sensing system for H_2O_2 at different pH (3.3-11.9).

Fig. S6. UV-vis absorption spectra of sensing system for H_2O_2 at different concentrations of ss-CNDs (0.75-4.50 mg·mL⁻¹).

Fig. S7. UV-vis absorption spectra of sensing system for H_2O_2 at different concentrations of ABTS (0.17-1.00 mM).

Fig. S8. UV-vis absorption spectra of sensing system for H_2O_2 at different reaction temperature (20-100 °C).

Fig. S9. The linear relationship between the change of R value (ΔI_R) of solution and H_2O_2 concentrations from 0 mM to 10 mM.

Methods	Materials	Linear range	LOD	Reference
		(mM)	(µM)	
Fluorometry	Si-O QDs-Ag NCs	0.08-60	6.5	S1
Fluorometry	BSA-AuNCs	0.001-50	0.7	S2
Fluorometry	CDs-OPD	0.001-0.2	0.42	S3
Colorimetry	4,5-diazafluorene	0.0005-0.5	0.0038	S4
Colorimetry	Au/Co ₃ O ₄ -CeO _x NCs-TMB	0.01-1	5.29	S5
Colorimetry	V ₂ O ₅ -Mt-TMB	0.03-0.4	4.0	S6
Colorimetry	CQDs-TMB	0.005-0.06	0.86	S7
Colorimetry	ss-CNDs-ABTS	0.05-10	9.53	This work

Table S1 Summary of recently reported detection methods for the quantitation of H₂O₂

Table S2 Determination of H_2O_2 in water samples by this colorimetric assay

Samples	Added (mM)	Found (mM)	Recovery (%)	RSD (%)
Water 1	5	5.15	103.1	2.54
Water 2	10	9.01	90.1	5.41

References

- S1 R. Dong, Y. Yao, D. Li, H. Zhang, W. Li, M. Molokee, Y. Liu, B. Lei, Ratio fluorescent hybrid probe for visualized fluorescence detec\tion of H₂O₂ in vitro and in vivo, Sens. Actuat. B-Chem., 2020, 321, 128643.
- S2 V. Jain, S. Bhagat, S. Singh, Bovine serum albumin decorated gold nanoclusters: A fluorescence-based nanoprobe for detection of intracellular hydrogen peroxide, Sens. Actuat. B-Chem., 2021, 327, 128886.
- S3 Y. Li, X. Gu, J. Zhao, F. Xi, Fabrication of a Ratiometric Fluorescence Sensor Based on Carbon Dots as Both Luminophores and Nanozymes for the Sensitive Detection of Hydrogen Peroxide, Molecules., 2022, 27, 7379.
- S4 C. Cebeci, B. Ucar, T. Acar, I. Erden, Colorimetric detection of hydrogen peroxide with gadolinium complex of phenylboronic acid functionalized 4,5-diazafluorene, Inorganica Chim. Acta., 2021, 522, 120386.
- S5 H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu, X. Zhang, Colorimetric and ultrasensitive

detection of H_2O_2 based on Au/Co₃O₄-CeO_x nanocomposites with enhanced peroxidase-like performance, Sens. Actuat. B-Chem., 2018, 271, 336-345.

- S6 X. Zhu, Y. Xue, S. Han, W. Chen, M. Fu, Y. Gao, S. Nie, Q. Liu, X. Zhang, X. Zhang, V₂O₅-montmorillonite nanocomposites of peroxidase-like activity and their application in the detection of H₂O₂ and glutathione, Appl. Clay. Sci., 2020, 195, 105718.
- S7 C. Yuan, X. Qin, Y. Xu, Q. Jing, R. Shi, Y. Wang, High sensitivity detection of H₂O₂ and glucose based on carbon quantum dots-catalyzed 3,3',5,5'tetramethylbenzidine oxidation, Microchem. J., 2020, 159, 105365.