Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

1	Supporting Information for
2	Enhanced removal of perfluorooctanoic acid by VUV/sulfite/iodide:
3	Efficiencies, influencing factors and decomposition mechanism
4	Hong Liu ^{a,b} , Ruibao Jia ^{a,b,*} , Xiaodong Xin ^b , Weilin Guo ^a , Wei Li ^b , Mingquan Wang ^b ,
5	Shaohua Sun ^b
6	
7	
8	a School of Water Conservancy and Environment, University of Jinan, Jinan 250022,
9	China
10	b Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101,
11	China
12	
13	
14	
15	* Corresponding author
16	E-mail: jiaruibao1968@163.com
17	Tel: + 86-531-89017607
18	

19 Text S1. Chemicals and reagents

Sodium sulfite anhydrous (≥ 97.0%) was supplied by Tianjin Damao Chemical Reagent Co., Ltd, 20 21 China. Sodium hydroxide (\geq 99.5%), Magnesium sulfate (\geq 99.0%), sodium chloride (\geq 99.5%), sodium bicarbonate (\geq 99.0%), sodium sulfate (\geq 99.5%), and copper sulfate pentahydrate (\geq 22 99.0%) were all obtained from Sinopharm Chemical Reagent Co. Ltd., China. Tert-butyl alcohol 23 and methanol were purchased from Sigma-Aldrich Co. Ltd., Germany. Sodium nitrate (\geq 99.0%) 24 was purchased from Tianjin Guangcheng Chemical Reagent Co., Ltd, China. Potassium iodide (≥ 25 99.5%) and sodium nitrite (≥ 99.5%) were supplied from Tianjin Kemiou Chemical Reagent Co., 26 27 Ltd, China. Sulfuric acid was obtained from Suzhou Crystal Clear Chemical Co. Ltd., China. Ferric sulfate (≥ 99.0%) and humic acid (HA, No. 53680) were purchased from Aladdin (Shanghai, 28 China). Perfluorooctanoic acid (PFOA, C7F15COOH, 98%) was supplied by J&K Scientific Inc. 29 30 (Beijing, China). All solutions were prepared in Milli-Q ultrapure water (18.2 MΩ·cm, Millipore).

35 Text S2. VUV photonic intensity at 185 nm

To obtain VUV photonic intensity ($I_{0,185 nm}$) at 185 nm, we explored the production rate of H₂O₂ in ultrapure water by 185 nm VUV ¹. The concentration of H₂O₂ increased with increasing reaction time until it reached a maximum value after 25 min exposure (Fig. S2). The quasi-stationary state was reached when the production rate of H₂O₂ (Eq. (S1)) was equal to its consumption rate (Eqs. (S2) – (S3)) ²⁻⁴. As the H₂O₂ production rate ${}^{r}H_{2}O_{2}$ (μ M s⁻¹) followed a pseudo-zero-order reaction (Fig. S2), it would be proportional to the absorbed VUV photon flux. $I_{0,185nm}$ could be determined using Eq. (S4). Photonic intensity from the VUV source at 185 nm was determined to be approximately 0.15 µEinstein•s⁻¹.

44
$$gOH+gOH \rightarrow H_2O_2$$
, $k = 4 \times 10^9 M^{-1} s^{-1}$ (S1)

45
$$H_2O_2 \xrightarrow{hv} gOH+gOH, \Phi = 0.555$$
 (S2)

46
$$H_2O_2 + HOg \rightarrow H_2O + HO_2^g, k = 3.3 \times 10^7 M^{-1} s^{-1}$$
 (S3)

47
$$I_{0,185nm} = \frac{r_{H_2O_2} gV}{\Phi_{H_2O_2}}$$
(S4)

48 where; ${}^{\Phi_{H_2O_2}}(25^{\circ}\text{C}, 0.024 \text{ M einstein}^{-1})$ is the apparent quantum yield for H_2O_2 production, and V 49 is the reaction volume (L).

Fig. S2 H₂O₂ production under VUV irradiation. Condition: T = 22 \pm 0.5 °C

53 Text S3. UV photonic intensity at 254 nm

The UV photonic intensity ($I_{0,254 \text{ nm}}$) at 254 nm was determined by the KI/KIO₃ method ⁵. The 54 mixed reaction solution in the presence of KI and KIO₃ will produce I₃⁻ under the UV radiation of 55 wavelength less than 290 nm (Eq.(S5)), and the concentration of I_3^- will increase with time. The 56 concentration of I3⁻ can be determined by a UV-vis spectrophotometer and the molar absorptivity 57 of I₃⁻ at 352 nm is 26400 M⁻¹cm⁻¹. Assuming that the reaction solution absorbed the light quantum 58 radiated by UV₂₅₄ completely, the $I_{0,254 nm}$ of the UV₂₅₄ system can be determined according to Eq. 59 60 (S6). Photonic intensity from the VUV source and UV source at 254 nm was determined to be 61 approximately 1.16 μ Einstein• s⁻¹ and 1.27 μ Einstein•s⁻¹, respectively. **ATT** 0

62
$$8\text{KI}+\text{KIO}_3+3\text{H}_2\text{O}+hv \rightarrow 3\text{I}_3^++6\text{OH}^-+9\text{K}^+$$
 (S5)

63
$$I_{0,254\,\text{nm}} = C_{I_3^-} \times V \times \frac{1}{\varphi_{I_3^-}} \times \frac{1}{t}$$
(S6)

64 where $C_{I_3^-}$ is the concentration of the formed I₃⁻ (M), V is the volume of reaction solution (L), 65 $\varphi_{I_3^-}$ (0.74 mol einstein⁻¹, 20°C) is the quantum yield of formed I₃⁻, and *t* is reaction time (s). 66 67 Text S4. The concentration of dissolved oxygen in different background solutions

As shown in Eqs. (S7) - (S9), plausible reactive species can be scavenged rapidly by dissolved 68 69 oxygen (DO)⁶. Whereas, due to the inconsistent description concerning whether to control DO in some previous studies ^{7, 8}. Thus, the effect of the reaction atmosphere on PFOA decomposition in 70 71 the VUV/SO $_3^{2-/1-}$ system was investigated (Fig. S3). Since the initial DO was not instantaneously 72 scavenged by SO₃²⁻ (Fig. S4), PFOA degradation efficiency was slightly lower in the control 73 atmosphere than in the nitrogen atmosphere. However, within 40 min, 10 mg·L⁻¹ PFOA was 74 almost completely decomposed in both the nitrogen atmosphere and control atmosphere. DO 75 could be neglected in the present system, which greatly benefits potential practical applications.

76
$$e_{aq}^{-} + O_2 \rightarrow O_2^{\bullet-}, \quad k = 1.9 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$$
 (S7)

77
$$\text{Hg}^+ \text{O}_2 \to \text{HO}_2^{\bullet}, \ k = 1.2 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$$
 (S8)

78
$$SO_3^{\bullet-} + O_2 \rightarrow SO_5^{\bullet-}, \ k = 1.5 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$$
 (S9)

We investigated the concentration of dissolved oxygen (DO) in different background solutions. The initial concentration of DO was 9.38 mg·L⁻¹ in ultrapure water, which decreased to 5.87 mg·L⁻¹ by introducing SO_3^{2-} for 10 min of stabilization. It was found that the concentration of DO was below its detection limit (0.20 mg·L⁻¹) by stirring for 10min. The concentration of DO was maintained at about 1.10 mg·L⁻¹ in PFOA/SO₃²⁻ and PFOA/SO₃²⁻/I⁻ systems continuously stirred for 10 min. The existence of PFOA reduced the quenching of DO by SO_3^{2-} , which was speculated that PFOA as a surfactant may enhance the solubility of DO in water.

88 Fig. S3 (a) Degradation of PFOA and (b) k_{obs} in different systems under UV irradiation. Condition: [PFOA]₀ = 10

 $\text{mg}\cdot\text{L}^{-1}$, $[\text{SO}_3^{2-}]_0 = 10 \text{ mM}$, $[\text{I}^-]_0 = 1 \text{ mM}$, [pH] = No adjusted.

100 Fig.S4 The effect of reaction atmosphere on the degradation of PFOA in VUV/SO₃²⁻/I⁻ system. Condition:

 $101 \quad [{\rm PFOA}]_0 {=} 10 \ mg {\cdot} L^{{-}1}, \ [{\rm SO}_3{}^{2{-}}]_0 {=} 10 \ mM, \ [I^{-}]_0 {=} 1 \ mM.$

102

103 Fig. S5 Concentrations of dissolved oxygen (DO) in different solution backgrounds. Condition: [PFOA]₀=10

104 $mg \cdot L^{-1}$, $[SO_3^{2-}]_0 = 10 \text{ mM}$, $[I^-]_0 = 1 \text{ mM}$.

Reactive species	Reaction rate constants (M ⁻¹ s ⁻¹)		Reactive	Reaction rate constants (M ⁻¹ s ⁻¹)	
	MeOH ^{4,9-11}	TBA ¹⁰⁻¹²	species	NO ₂ - ^{13, 14}	
H•	1×10^{5}	1.15×10^{6}	H•	7.1×10^{8}	
OH•	$9.7 imes 10^8$	$6.0 imes 10^8$	e _{aq} -	4.1×10^{9}	
SO4	$2.5 imes 10^7$	$8.4 imes 10^5$	/		
e _{aq} -	$< 10^{4}$	/			

Table S1. The second-order rate constants for reactions of reactive species and quenchers.

109 Fig. S6 Fluorescence intensity of 7-hydroxycoumarin at different reaction time in the (a) VUV/SO₃²⁻/I⁻ and (b)

110
$$VUV/SO_3^{2-}$$
 processes. Condition: $[SO_3^{2-}]_0 = 10 \text{ mM}$, $[I^-]_0 = 1 \text{ mM}$, [Coumarin] = 1mM.

113 Fig. S7 Effect of initial pH on (a) the degradation of PFOA in the VUV/SO₃²⁻/I⁻ system; (b) pH values in the 114 presence and absence of SO₃²⁻ in PFOA solutions;(c) the defluorination of PFOA in the VUV/SO₃²⁻/I⁻ system; (d) 115 the distribution and speciation of SO₃²⁻ and I⁻ species in pH from 0 to 14. Condition: [PFOA]₀ = 10 mg·L⁻¹, [SO₃²⁻]₀

Fig. S8 Mass spectrometry of intermediates of PFOA degradation

123 Fig. S9 The evolution of intermediates of PFOA degradation in the $VUV/SO_3^{2-}/I^{-}$ process

Atom	q_N	q_{N+1}	$f^{\scriptscriptstyle +}$
1(F)	-0.34571	-0.38227	0.03656
2(F)	-0.34571	-0.38227	0.03656
3(F)	-0.35079	-0.37734	0.02655
4(F)	-0.35079	-0.37734	0.02655
5(F)	-0.34486	-0.38869	0.04383
6(F)	-0.34486	-0.38869	0.04383
7(F)	-0.3493	-0.36671	0.01741
8(F)	-0.3493	-0.36671	0.01741
9(F)	-0.34091	-0.38687	0.04596
10(F)	-0.34091	-0.38687	0.04596
11(F)	-0.37005	-0.38132	0.01127
12(F)	-0.37005	-0.38132	0.01127
13(F)	-0.34823	-0.40822	0.05999
14(F)	-0.34814	-0.3832	0.03506
15(F)	-0.34814	-0.3832	0.03506
16(O)	-0.71014	-0.75801	0.04787
17(O)	-0.73221	-0.7523	0.02009
18(C)	0.67714	0.59607	0.08107
19(C)	0.67291	0.62214	0.05077
20(C)	0.67519	0.56512	0.11007
21(C)	0.67118	0.65432	0.01686
22(C)	0.64229	0.55802	0.08427
23(C)	0.63386	0.63119	0.00267
24(C)	1.06352	0.97068	0.09284
25(C)	0.65402	0.65918	-0.00516

Table S2. Condensed f^{+} indices for PFOA anion

Note:
$$f^{+} = q_{N} - q_{N+1}^{-15}$$

Chemical bond	Bond length(Å)	Chemical bond	Bond length(Å)
13F-24C	1.34375	3F-19C	1.35817
14F-24C	1.33893	4F-19C	1.35817
15F-24C	1.33893	18C-19C	1.56478
22C-24C	1.55407	7F-21C	1.35904
9F-22C	1.35389	8F-21C	1.35904
10F-22C	1.35389	19C-21C	1.56513
5F-20C	1.35590	11F-23C	1.37713
6F-20C	1.35590	12F-23C	1.37713
20C-22C	1.55803	21C-23C	1.54951
1F-18C	1.35540	16O-25C	1.24586
2F-18C	1.35540	170-25C	1.24524
18C-20C	1.56341	23C-25C	1.59795

127 Table S3. The bond length of PFOA anion chemical bond calculated at B3LYP/6-31 G (d, p) level

Atom	q_N	q_{N+1}	$f^{\scriptscriptstyle +}$
1(F)	-0.33326	-0.36092	0.02766
2(F)	-0.33326	-0.36092	0.02766
3(F)	-0.33673	-0.36257	0.02584
4(F)	-0.33673	-0.36257	0.02584
5(F)	-0.33423	-0.36431	0.03008
6(F)	-0.33423	-0.36431	0.03008
7(F)	-0.33007	-0.35731	0.02724
8(F)	-0.33007	-0.35731	0.02724
9(F)	-0.331	-0.35804	0.02704
10(F)	-0.331	-0.35804	0.02704
11(F)	-0.34746	-0.39711	0.04965
12(F)	-0.34746	-0.39711	0.04965
13(F)	-0.33539	-0.35351	0.01812
14(F)	-0.33852	-0.3531	0.01458
15(F)	-0.33852	-0.3531	0.01458
16(O)	-0.62029	-0.67507	0.05478
17(O)	-0.54857	-0.66209	0.11352
18(C)	0.667	0.62543	0.04157
19(C)	0.66645	0.62608	0.04037
20(C)	0.66314	0.6121	0.05104
21(C)	0.67464	0.64387	0.03077
22(C)	0.63739	0.58833	0.04906
23(C)	0.62663	0.54843	0.0782
24(C)	1.04089	1.02625	0.01464
25(C)	0.71255	0.62741	0.08514
26(H)	0.51809	0.49949	0.0186

Table S4. Condensed f^+ indices for PFOA molecule

	acute toxicity (mg•L ⁻¹)			chronic toxicity (ChV) (mg•L ⁻¹)		
Compounds	Fish LC ₅₀ /96h	Daphnia LC ₅₀ /48h	Green algae EC50/96h	Fish	Daphnia	Green algae
PFOA	10.1	<mark>7.44</mark>	16.2	<mark>1.34</mark>	<mark>1.49</mark>	<mark>7.58</mark>
P1	35.4	<mark>24.5</mark>	<mark>41.4</mark>	<mark>4.37</mark>	<mark>4.15</mark>	<mark>16.9</mark>
P2	122	<mark>79.3</mark>	104	14.0	11.3	<mark>36.8</mark>
P3	<mark>409</mark>	<mark>250</mark>	<mark>254</mark>	<mark>43.6</mark>	30.0	<mark>78.4</mark>
P4	<mark>7.21</mark>	<mark>5.37</mark>	12.3	<mark>0.970</mark>	1.11	<mark>5.86</mark>
P5	118	<mark>76.9</mark>	100	<mark>13.6</mark>	10.9	<mark>35.4</mark>
P6	<mark>84.4</mark>	<mark>55.5</mark>	<mark>76.0</mark>	<mark>9.82</mark>	<mark>8.16</mark>	<mark>27.6</mark>
P7	<mark>276</mark>	171	<mark>181</mark>	<mark>29.9</mark>	<mark>21.1</mark>	<mark>57.4</mark>
P8	2.30E+3	1.29E+3	<mark>898</mark>	221	120	227
Р9	181	117	<mark>148</mark>	<mark>20.6</mark>	16.3	<mark>51.7</mark>
P10	2.15E+3	1.23E+3	<mark>934</mark>	211	121	<mark>247</mark>
P11	<mark>518</mark>	<mark>319</mark>	<mark>333</mark>	<mark>55.8</mark>	<mark>39.1</mark>	105
P12	<mark>84.5</mark>	54.7	77.5	<mark>9.69</mark>	<mark>8.22</mark>	<mark>28.7</mark>
P13	1.20E+3	<mark>716</mark>	<mark>664</mark>	124	<mark>80.9</mark>	<mark>196</mark>
P14	<mark>83.9</mark>	<mark>56.3</mark>	<mark>83.8</mark>	<mark>9.99</mark>	<mark>8.75</mark>	<mark>31.8</mark>
P15	<mark>61.1</mark>	<mark>41.5</mark>	<mark>65.0</mark>	<mark>7.38</mark>	<mark>6.67</mark>	<mark>25.4</mark>
P16	<mark>109</mark>	<mark>72.4</mark>	<mark>102</mark>	12.8	10.8	37.5
P17	<mark>117</mark>	77.1	<mark>106</mark>	<mark>13.6</mark>	11.4	<mark>38.6</mark>
P18	3.48 E+3	1.94E+3	1.34E+3	<mark>330</mark>	180	337

132 Table S5. Predicted acute and chronic toxicity of 8:3FTCA and its intermediates by ECOSAR program

133 Red: very toxic, LC_{50} (EC₅₀)/ChV < 1.0 mg•L⁻¹; Pink: toxic, LC_{50} (EC₅₀)/ChV = 1.0–10.0 mg•L⁻¹;

134 Blue: harmful, LC_{50} (EC₅₀)/ChV = 10.0–100.0 mg•L⁻¹; Green: not harmful, LC_{50} (EC₅₀)/ChV > 100.0

 $135 mg \cdot L^{-1}$.

136

137

139 References

140	1.	L. Yang, M. Li, W. Li, J. R. Bolton and Z. Qiang, A green method to determine VUV
141		(185 nm) fluence rate based on hydrogen peroxide production in aqueous solution,
142		Photochem. Photobiol., 2018, 94, 821-824.
143	2.	K. Azrague, E. Bonnefille, V. Pradines, V. Pimienta, E. Oliveros, MT. Maurette and F.
144		Benoit-Marquié, Hydrogen peroxide evolution during V-UV photolysis of water,
145		Photochem. Photobiol. Sci., 2005, 4, 406-408.
146	3.	S. Goldstein, D. Aschengrau, Y. Diamant and J. Rabani, Photolysis of aqueous H_2O_2 :
147		quantum yield and applications for polychromatic UV actinometry in photoreactors,
148		Environ. Sci. Technol., 2007, 41, 7486-7490.
149	4.	M. G. Gonzalez, E. Oliveros, M. Wörner and A. M. Braun, Vacuum-ultraviolet photolysis
150		of aqueous reaction systems, J. Photochem. Photobiol. C., 2004, 5, 225-246.
151	5.	R. O. Rahn, Potassium Iodide as a Chemical Actinometer for 254 nm Radiation: Use of
152		lodate as an Electron Scavenger, Photochem. Photobiol., 1997, 66, 450-455.
153	6.	P. Neta, R. E. Huie and A. B. Ross, Rate constants for reactions of inorganic radicals in
154		aqueous solution, J. Phys. Chem. Ref. Data, 1988, 17, 1027-1284.
155	7.	Z. F. Ren, U. Bergmann and T. Leiviskä, Reductive degradation of perfluorooctanoic acid
156		in complex water matrices by using the UV/sulfite process, Water Res., 2021, 205,
157		117676.
158	8.	Y. R. Gu, T. Z. Liu, Q. Zhang and W. Y. Dong, Efficient decomposition of
159		perfluorooctanoic acid by a high photon flux UV/sulfite process: Kinetics and associated
160		toxicity, Chem. Eng. J., 2017b, 326 , 1125-1133.

- 161 9. M. Anbar and E. J. Hart, The reactivity of aromatic compounds toward hydrated electrons,
- 162 J. Am. Chem. Soc., 1964, **86**, 5633-5637.
- 163 10. G. P. Anipsitakis and D. D. Dionysiou, Transition metal/UV-based advanced oxidation
- 164 technologis for water decontamination, *Appl. Catal. B.*, 2004, **54**, 155-163.
- 165 11. G. Wu, Y. Katsumura and G. Chu, Photolytic and radiolytic studies of SO₄. in neat
- 166 organic solvents, *Phys. Chem. Chem. Phys.*, 2000, **2**, 5602-5605.
- 167 12. J. Criquet and N. K. V. Leitner, Degradation of acetic acid with sulfate radical generated
 by persulfate ions photolysis, *Chemosphere*, 2009, 77, 194-200.
- 169 13. X. C. Li, J. Ma, G. F. Liu, J. Y. Fang, S. Y. Yue, Y. H. Guan, L. W. Chen and X. W. Liu,
- 170 Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process,
- 171 Environ. Sci. Technol. , 2012, **46**, 7342–7349.
- 172 14. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Critical review of rate
- 173 constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals
- 174 (·OH/·O⁻) in aqueous solution, J. Phys. Chem. Ref. Data, 1988, 17, 513–886.
- 175 15. Y. X. Bao, S. S. Deng, X. S. Jiang, Y. X. Qu, Y. He, L. Q. Liu, Q. W. Chai, M. Mumtaz,
- 176 J. Huang, G. Cagnetta and G. Yu, Degradation of PFOA Substitute: GenX (HFPO-DA
- 177 Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? , *Environ*.
- 178 Sci. Technol., 2018, **52**, 11728-11734.
- 179