Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Material 1 for 2 3 Enhanced combined sewer overflow treatment by rapid 4 magnetic flocculation-magnetic sedimentation: Efficiency 5 and mechanism Changyang Xie^{a, b, c}, Xinyue Li^a, Zhenzhen Tang^{a, b, c}, Wenhai Chu^{a, b, c, *}, Huaizheng 6 7 Li^{a, b, c, *} 8 a State Key Laboratory of Pollution Control and Resources Reuse, College of 9 Environmental Science and Engineering, Tongji University, 200092 Shanghai, China 10 ^b Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji 11 University, 200092 Shanghai, China 12 ^c Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, 13 China 14 *Corresponding author: 15 Tel.: +8618721871983; fax: +86 21 65986839. 16 17 E-mail address: feedwater@126.com (W. Chu), lihztg@yeah.net (H. Li). 18 Address: Room 401 (H. Li), National Engineering Research Center for Urban Pollution 19 Control, 1239 Siping Road, Yangpu District, Shanghai, 200092, China. Room 407 (W. Chu), National Engineering Research Center for Urban Pollution Control, 1239 Siping 20 21 Road, Yangpu District, Shanghai, 200092, China.

22 Table of Contents

23	Enhanced combined sewer overflow treatment by rapid magnetic flocculation-magnetic
24	sedimentation: Efficiency and mechanism1
25	Fig. S1. External dimensions of magnetic field generation system
26	Fig. S2. Effects of gravity and magnetic sedimentation on the removal efficiency of COD, TN,
27	and TP, pH = 7.0 ± 0.1 , T = 25 ± 1 °C
28	Fig. S3. Particle sizes, fractal dimensions (a) and saturation magnetization intensity (b) of
29	magnetic coagulation with different magnetic particle dosages, pH = 7.0 ± 0.1 , T = 25 ± 1 °C.
30	6
31	Fig. S4. Morphological structures of the flocs generated by different magnetic particle
32	dosages, pH = 7.0 ± 0.1 , T = 25 ± 1 °C7
33	Fig. S5. Effects of pH on the removal efficiency of COD, TN, and TP, $T = 25 \pm 1$ °C
34	Fig. S6. Validation experiments conducted on typical CSO with high pollution. pH 7.0 ± 0.1 ,
35	$T = 25 \pm 1 \text{ °C}9$
36	Fig. S7. Effect of weather conditions on the molecular weight distribution of dissolved
37	organic matter in CSOs. The number of sunny days in the early stage for the samples in (a)
38	was 0, while the average rainfall intensity for the samples in (b) was 1.67 mm/h10
39	Tab. S1. Rainfall conditions of different CSOs. 11
40	Tab. S2. Specific parameters of magnetic field generation system
41	Tab. S3. Level of factors. 13

42	Tab. S4. Orthogonal experimental results. 14
43	Tab. S5. Experimental factor levels and codes. 15
44	Tab. S6. CCD design and response values
45	Tab. S7. ANOVA for COD removal rate
46	Tab. S8. ANOVA for TN removal rate. 18
47	Tab. S9. ANOVA for TP removal rate. 19
48	Tab. S10. Significance of quadratic model coefficient of COD removal rate20
49	Tab. S11. Significance of quadratic model coefficient of TN removal rate21
50	Tab. S12. Significance of quadratic model coefficient of TP removal rate. 22
51	Tab. S13. Water quality of CSOs under different weather conditions (Number corresponds to
52	Table S1)23
53	

55 Fig. S1. External dimensions of magnetic field generation system.

57 Fig. S2. Effects of settling method and settling time on the removal efficiency of COD, TN, and TP,

60 Fig. S3. Particle sizes, fractal dimensions (a) and saturation magnetization intensity (b) of magnetic

61 coagulation with different magnetic particle dosages, pH = 7.0 ± 0.1 , T = 25 ± 1 °C.

63 Fig. S4. Morphological structures of the flocs generated by different magnetic particle dosages, pH

 $64 \ = 7.0 \pm 0.1, \, T = 25 \pm 1 \ \text{°C}.$

66 Fig. S5. Effects of pH on the removal efficiency of COD, TN, and TP, $T = 25 \pm 1$ °C.

68 Fig. S6. Validation experiments conducted on typical CSO with high pollution. pH 7.0 \pm 0.1, T =

70

71 Fig. S7. Effect of weather conditions on the molecular weight distribution of dissolved organic

- 72 matter in CSOs. The number of sunny days in the early stage for the samples in (a) was 0, while the
- 73 average rainfall intensity for the samples in (b) was 1.67 mm/h.

	Rainfall duration /h	Accumulated rainfall /mm	Average rainfall intensity /mm·h ⁻¹	Sunny days /d
1	2.5	16.5	6.6	0
2	15.0	55.5	3.7	0
3	10.0	16.3	1.63	0
4	7.5	12.0	1.6	5
5	6.0	9.0	1.5	10
6	4.0	30.0	7.5	0
7	3.0	33.4	11.1	0

74 Tab. S1. Rainfall conditions of different CSOs.

Tab. S2. Specific parameters of magnetic field generation system.

DB-130C Unipolar electromagnet								
Input	Output	Output	Maximum	Magnetic field	index of			
voltage	voltage	current	output power	intensity range	stability			
220V	0-170V	0-10A	1700W	0-400mT	≤3%			

78	Tab. S3. Level of factors.								
		Factors							
	Levels	PAC dosage	PAM dosage	Slow stirring rate /	Slow stirring time				
		/ (mg/L)	/ (mg/L)	(r/min)	/ (min)				
	1	50	0.5	100	1.5				
	2	100	1	150	2				
	3	150	1.5	200	2.5				
	4	200	2	250	3				

	78	Tab.	S3.	Level	of	factors
--	----	------	-----	-------	----	---------

Exporimo	DAC	DAM	Slow	Slow	COD	TN	ТР
	rAC	rAlvi	Slow	stirring	removal	removal	removal
	dosage /	dosage		time	efficiency	efficiency	efficiency
Number	(mg/L)	/ (mg/L)	/ (rpm/min)	/ (min)	/ (%)	/ (%)	/ (%)
1	50	0.5	100	1.5	73.83	40.10	49.70
2	50	1	150	2	79.65	36.89	47.36
3	50	1.5	200	2.5	84.88	42.78	45.02
4	50	2	250	3	85.46	40.64	46.19
5	100	0.5	150	2.5	84.30	42.24	56.72
6	100	1	100	3	82.55	41.17	60.23
7	100	1.5	250	1.5	84.88	42.78	55.55
8	100	2	200	2	81.39	38.50	56.72
9	150	0.5	200	3	83.13	43.31	62.52
10	150	1	250	2.5	86.62	42.78	64.32
11	150	1.5	100	2	83.13	40.10	57.89
12	150	2	150	1.5	79.65	37.96	61.40
13	200	0.5	250	2	83.72	37.96	61.98
14	200	1	200	1.5	83.13	43.85	73.68
15	200	1.5	150	3	84.88	41.71	67.83
16	200	2	100	2.5	83.13	43.85	69.00

80 Tab. S4. Orthogonal experimental results.

Factors	Levels				
ractors	-1.414	-1	0	1	1.414
Magnetic particle dosage (mg/L)	129.29	150	200	250	270.71
Magnetic field intensity (mT)	108.58	150	250	350	391.42

82 Tab. S5. Experimental factor levels and codes.

Dun -	Real values		Response		
Kun -	A (mg/L)	B (mT)	Y ₁ (%)	Y ₂ (%)	Y ₃ (%)
1	150	150	91.5	72.7	79.54
2	250	150	92.1	75.2	85
3	150	350	92.7	75.5	85.34
4	250	350	93.3	78.7	86.02
5	129.29	250	92.4	73.9	83.64
6	270.71	250	93	78.4	85.68
7	200	108.59	92.7	76.5	84.66
8	200	391.42	93.3	80	87.04
9	200	250	93.2	80.3	87.39
10	200	250	93.6	81.3	88.27
11	200	250	93.5	79.4	86.45
12	200	250	93.7	80.5	87.23
13	200	250	93.9	81	87.96

Tab. S6. CCD design and response values.

Item	Sum of squares	Degrees of freedom	Mean square	F-value	Prob. > F
Model	4.74	4	1.18	9.58	0.0038
Residual	0.99	8	0.12		
Lack of fit	0.72	4	0.18	2.69	0.18
Pure error	0.27	4	0.07		_

86 Tab. S7. ANOVA for COD removal rate.

87 Notes: R²: determination coefficient, R^2_{Adj} : adjusted R², R^2_{Pred} : predetermined R², CV: coefficient

88 of variation, AP: adequate precision. Values for the reduced model with significant coefficients, R^2

 $89 = 0.8273, R^2_{Adj} = 0.7410, R^2_{Pred} = 0.3181, CV = 0.3782 \text{ \%, AP} = 7.4149.$

Item	Sum of squares	Degrees of freedom	Mean square	F-value	Prob. > F
Model	91.13	4	22.78	22.34	0.0002
Residual	8.16	8	1.02		
Lack of fit	5.95	4	1.49	2.69	0.18
Pure error	2.21	4	0.55		_

90 Tab. S8. ANOVA for TN removal rate.

91 Notes: R²: determination coefficient, R^2_{Adj} : adjusted R², R^2_{Pred} : predetermined R², CV: coefficient

92 of variation, AP: adequate precision. Values for the reduced model with significant coefficients, R^2

93 = 0.9178, R^2_{Adj} = 0.8768, R^2_{Pred} = 0.6778, CV = 1.2948 %, AP = 11.6617.

Item	Sum of squares	Degrees of freedom	Mean square	F-value	Prob. > F
Model	49.47	4	12.37	7.17	0.0093
Residual	13.79	8	1.72		
Lack of fit	11.80	4	2.95	5.95	0.0561
Pure error	1.98	4	0.49		_

94 Tab. S9. ANOVA for TP removal rate.

95 Notes: R²: determination coefficient, R^2_{Adj} : adjusted R², R^2_{Pred} : predetermined R², CV: coefficient

96 of variation, AP: adequate precision. Values for the reduced model with significant coefficients, R^2

97 = 0.8723, R^2_{Adj} = 0.7811, R^2_{Pred} = 0.2661, CV = 1.2533 %, AP = 8.8269.

	Independent variables	Degrees of freedom	Standard error	Prob. > F	
_	А	1	0.13	0.0954	
	В	1	0.13	0.0185	
	AB	1	0.19	0.9999	
	A ²	1	0.14	0.0061	
_	B ²	1	0.14	0.0256	

98 Tab. S10. Significance of quadratic model coefficient of COD removal rate.

	Independent variables	Degrees of freedom	Standard error	Prob. > F	
_	А	1	0.38	0.0055	
	В	1	0.38	0.0075	
	AB	1	0.54	0.7741	
	A ²	1	0.41	0.0004	
_	B^2	1	0.41	0.0064	

100 Tab. S11. Significance of quadratic model coefficient of TN removal rate.

Independent variables	Degrees of freedom	Standard error	Prob. > F	
А	1	0.37	0.02079	
В	1	0.37	0.0122	
AB	1	0.53	0.0614	
A^2	1	0.40	0.0039	
B ²	1	0.40	0.0280	

Tab. S12. Significance of quadratic model coefficient of TP removal rate.

9	51)								
		COD	SCOD	TN	STN	ТР	STP	NH ₃ -N	SNH ₃ -N
		(mg/L)	(mg/L)						
	1	1210	112	36	10	1100	22.6	6.1	20.3
	2	810	82	23.5	6.8	700	13.5	6.3	17.2
	3	172	38	18.7	11.8	270	8.55	6.8	11.3
	4	400	52	20.5	10.1	500	17.1	9.2	15.5
	5	460	47	21.7	10.6	560	13.8	7.3	15.1
	6	1130	104	31	9	1200	18.4	6.7	18.7
	7	1400	140	42	11.7	1600	12.3	3.4	18.9

104 Tab. S13. Water quality of CSOs under different weather conditions (Number corresponds to Table105 S1)