Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

DNA Origami: Thinking 'Outside the Fold' for Direct Integrity Testing of Membranes for Virus Removal in Potable Reuse Applications

Hannah Ray¹, Katerina Papp¹, Leopold Green², Boo Shan Tseng³, Eric Dickenson¹, and Daniel Gerrity^{1*}

¹ Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193, USA

² Purdue University, 610 Purdue Mall, West Lafayette, Indiana, 47907, USA

³ University of Nevada Las Vegas, 4700 S. Maryland Parkway, Las Vegas, NV, 89119, USA

*Corresponding author: <u>Daniel.Gerrity@snwa.com</u>

Keywords: nanofiltration (NF); reverse osmosis (RO), log reduction value (LRV); MS2 bacteriophage; DNA nanostructure; quantitative polymerase chain reaction (qPCR) **Figure S1.** Photographs of the single-element membrane system. **(Left)** Direction of flow is described and indicated by arrows. **(Right)** Due to the batch/recirculating configuration of the system, the feed water was constantly cooled to prevent temperature increases. This was accomplished by placing the feed-containing aluminum tank in a larger plastic tank filled with single-pass cooling water. The feed water to the system consisted of a full-scale tertiary effluent (primary clarification; activated sludge with full nitrification, partial denitrification, and biological phosphorus removal; secondary clarification; and ultrafiltration) that was pH-adjusted from 7.3 to 6.9 using sulfuric acid. Aliquots of each spiking stock (see main text) were added to the water, and the water was manually mixed. A 50-mL sample was collected into a conical tube to represent the combined feed water in the tank at time zero. The feed pump was then started, and the water was allowed to recirculate for 30 min prior to sample collection, at which point 50-mL feed and permeate samples were collected every 5-15 min.

Table S1. Summary of general water quality parameters for the full-scale tertiary effluent (averages of two sample events). The treatment train consists of primary clarification, activated sludge (full nitrification, partial denitrification, and biological phosphorus removal), secondary clarification, and ultrafiltration.

Water Quality Parameter	Units	Value
pН		7.0
Total organic carbon (TOC)	mg-C/L	6.0
Electrical conductivity (EC)	μS/cm	1678
Alkalinity	mg/L as CaCO ₃	94
Turbidity	NTU	<1
UV254	cm ⁻¹	0.12
Nitrate	mg-N/L	12
Nitrite	mg-N/L	< 0.10
Ammonia	mg-N/L	0.65
Calcium	mg/L	92
Magnesium	mg/L	38
Hardness	mg/L as CaCO ₃ (mM)	386 (3.86)

Operational Parameter	Units	RO Hydranautics ESPA2-LD-4040	NF (1) Toray CSM NE4040-40	NF (2) Dupont Filmtec NF270
Feed Flow (FF)	gpm	8.20	9.42	9.29
Recycle Flow (RF)	gpm	0.92	1.00	0.92
Permeate Flow (PF)	gpm	0.89	1.03	1.03
Concentrate Flow (CF)	gpm	6.39	7.38	7.34
Recovery (PF/FF)	%	10.8%	10.9%	11.1%
Flux	gfd	15.9	17.5	18.1
Feed Pressure	psi	138	93	50
Molecular Weight Cutoff	Da	100–200ª	320-350 ^b	155–400°

Table S2. Summary of operational conditions for each membrane.

^aReferences: [1]–[3]. ^bReference: [4]. ^cReferences: [5]–[9].

	Table S3.	Summary	of the e	xperimental	conditions	for the	three s	piking	experiments.
--	-----------	---------	----------	-------------	------------	---------	---------	--------	--------------

Spiking Experiment	Membrane	Туре	DNA Nanostructure Formulation ^a
	Hydranautics ESPA2-LD-4040	RO	GP, NL, NS
1	CSM NE4040-40	NF1	GP, NL, NS
	Filmtec NF270	NF2	GP, NL, NS
2	Hydranautics ESPA2-LD-4040	RO	GP, NL, NS
	CSM NE4040-40	NF1	GP, NL, NS
3	Hydranautics ESPA2-LD-4040	RO	GP, NL, OLS
	CSM NE4040-40	NF1	GP, NL, OLS

^aGP: gel-purified; NL: non-labeled; NS: non-stabilized; OLS: oligolysine-stabilized.

Figure S2. (Left) Illustration of the DNA nanostructure "Gear" shape and **(Right)** transmission electron microscope (TEM) photograph of the synthesized structures after gel purification. **Source:** tilibit nanosystems synthesis report.

Text S1. QA/QC for molecular analyses.

Standards and Equivalent Sample Volumes (ESVs). Standards were purchased from Integrated DNA Technologies (IDT, Coralville, IA) as gBlock Gene Fragments (Table S4) and processed according to manufacturer's instructions. The gBlock Gene Fragments were resuspended in 1X TE buffer to target a concentration of 10 ng/ μ L. This concentration was further verified by quantification with a Qubit 4 Fluorometer and the dsDNA HS Assay Kit (Invitrogen). ThermoFisher's DNA Copy Number and Dilution Calculator (DNA copy number calculator) was then used to dilute each standard to a working stock of 10^8 gene copies (gc)/ μ L based on the stock concentration and fragment size. The working stocks were serially diluted down to 10^1 gc/µL for MS2 or 10^2 gc/µL for the DNA nanostructures to generate assay-specific standard curves (see Figure S3 for nanostructure standard curves). For the SYBR-based nanostructure assays, the intercalating dye requires dsDNA to fluoresce. Thus, to account for the difference in structure between the dsDNA gBlock Gene Fragments and the ssDNA nanostructures, observed starting quantities for the nanostructures (as determined from the qPCR instrument) were multiplied by two. For all qPCR assays, starting quantities were converted to reaction-specific concentrations (in gc/reaction) using standard curves, and sample-specific concentrations were calculated based on equivalent sample volumes (ESVs). Equations S1-S3 define the ESVs for the (1) RT-qPCR analyses for MS2, (2) the direct extraction qPCR analyses for the nanostructures, and (3) the direct quantification qPCR analyses for the nanostructures, respectively.

Equation S1. Equivalent sample volume (ESV) calculation for direct extraction and RT-qPCR analysis of spiked MS2 bacteriophage.

ESV (mL) =
$$\frac{1 \ \mu L \ cDNA \ template}{20 \ \mu L \ total \ cDNA} \times \frac{5 \ \mu L \ reverse \ transcription \ template}{60 \ \mu L \ nucleic \ acid \ eluate} \times 350 \ \mu L \ sample \times \frac{1 \ m L}{1000 \ \mu L} = 0.001458 \ mL$$

Equation S2. Equivalent sample volume (ESV) calculation for direct extraction and qPCR analysis of spiked nanostructures.

ESV (mL) =
$$\frac{1 \,\mu L \,\text{DNA template}}{60 \,\mu L \,\text{nucleic acid eluate}} \times 350 \,\mu L \,\text{sample} \times \frac{1 \,\text{mL}}{1000 \,\mu L} = 0.005833 \,\text{mL}$$

Equation S3. Equivalent sample volume (ESV) calculation for direct qPCR analysis of spiked nanostructures.

ESV (mL) = 1
$$\mu$$
L sample × $\frac{1 \text{ mL}}{1000 \,\mu\text{L}}$ = 0.001000 mL

Ray et al. (2024)

Table S4. Sequences used for gBlock Gene Fragment standards for the MS2 and DNA nanostructure assays.

Standard Name	Sequence	Length (bp)
MS2_STD	TAAAGTCTCCTTTCTCGATGGTCCATACCTTAGATGCGTTAGC	160
	ATTAATCAGGCAACGGCTCTCTAGATAGAGCCCTCAACCGGA	
	GTTTGAAGCATGGCTTCTAACTTTACTCAGTTCGTTCTCGTCG	
	ACAATGGCGGAACTGGCGACGTGACTGTCGCCCCAAGCAAC	
	TTCGCTAACGGGGTCGCTGAATGGATCAGCT	
p7249-8064_STD1	AAACCATCTCAAGCCCAATTTACTACTCGTTCTGGTGTTTCTC	163
	GTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACG	
	TTGATTTGGGTAATGAATATCCGGTTCTTGTCAAGATTACTCT	
	TGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGT	
	TCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCC	
p7249-8064_STD2	TCGGTACTTTATATTCTCTTATTACTGGCTCGAAAATGCCTCT	98
	GCCTAAATTACATGTTGGCGTTGTTAAATATGGCGATTCTCA	
	ATTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAAGAA	
	TTTGTATAACGCATATGAT	

*STD1 and STD2 were used for nanostructure assays 1 and 2, respectively (see Table 1 in main text for assays).

Figure S3. Regression and amplification curves for the two SYBR-based qPCR assays used for DNA nanostructure quantification. The curves illustrate the amplifications of the gBlock Gene Fragments used in assay development and to generate standard calibration curves for quantification.

No Template Control (NTC) Amplification. Each standard curve included a no template control (NTC) and was run in triplicate alongside samples. All NTCs included in the MS2 qPCR assay exhibited no amplification, as expected. In contrast, NTCs for both nanostructure (NS) assays showed amplification

(Cq = 28.78 for NS assay 1 and Cq = 28.25 for NS assay 2), and this background signal was eventually linked to the SYBR-based mastermix. We hypothesized that this false-positive signal could be eliminated by pretreatment of the iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories) with DNase I. To test this hypothesis, 150 μ L of the iTaq Universal SYBR Green Supermix was incubated with 17 μ L of buffer containing MgCl₂ (a component of the DNase I kit) and 3 μ L of DNase I at 37°C for 30 minutes, followed by 10 minutes at 65°C. In a separate control, 150 μ L of the iTaq Universal SYBR Green Supermix was incubated with 17 μ L of the buffer and 3 μ L of water (instead of DNase I). This pretreatment step successfully eliminated NTC amplification but also reduced the overall performance of the NS assays, thereby negating its benefits. Instead of implementing this DNase I pretreatment, sample data were adjusted for the background signal originating from the mastermix (i.e., by subtracting the background ge quantity) to obtain nanostructure-specific concentrations.

Limits of Quantification (LoQs). Limits of quantification (LoQs) were determined for all assays by analyzing a set of test samples (i.e., standards) with known concentrations ranging from 1,000 to 1 gc/µL and comparing against NTCs and blanks in 9 replicates. The LoQ values (**Table S5**) were determined using a statistical t-test with 99% confidence, as per the U.S. EPA (Method Detection Limit Procedure – Revision 2 outlined in 40 CFR Part 136 Appendix B). For any sample that was determined to be non-detect or <LoQ during the membrane study, the LoQs in **Table S5** were imputed for those leftcensored datapoints and used to calculate corresponding log reduction values (LRVs).

Table S5. Limits of quantification (LoQs) for the MS2 and nanostructure qPCR assays. The nanostructures were analyzed with and without direct extraction.

qPCR Assay	Reaction LoQ (gc/reaction)	ESV (mL)	Sample LoQ ^b (gc/mL)
Direct Extraction MS2°	9	0.001458	6.17×10 ³
Direct Extraction Nanostructures	62ª	0.005833	1.06×10^4
Direct Quantification (No Extraction) Nanostructures ^c	62ª	0.001000	6.20×10 ⁴

^aNanostructure LoQ accounts for background (NTC) amplification from mastermix for assay 1.

^bSample LoQ accounts for equivalent sample volume (ESV) in each qPCR reaction.

^cPrimary methods selected for sample analysis.

Table S6. MS2 concentrations for experiment samples as determined by **(top)** culturing, **(middle)** RTqPCR without RNase treatment, and **(bottom)** RT-qPCR with RNase treatment prior to nucleic acid extraction. Red font indicates concentrations that were below the limit of quantification (LoQ).

MS2 CULTURE		RO (PFU/mL) NF1 (PFU/mL)				NF2 (PFU/mL)								
Experiment	Sample	Tank	Feed	Permeate	LRV	Tank	Feed	Permeate	LRV	Tank	Feed	Permeate	LRV	
	0	6.33E+05	-	-	-	2.74E+06	-	-	-	1.54E+06	-	-	-	
	1	-	1.63E+06	3.78E+00	5.64	-	1.73E+06	3.33E-01	6.71	-	7.47E+05	2.89E+00	5.41	
1	2		9.40E+05	6.67E+01	4.15		1.10E+06	1.44E+00	5.88	-	7.67E+05	1.29E+01	4.77	
	3		1.39E+06	4.44E-01	6.50		1.03E+06	1.78E+00	5.76	-	7.00E+05	4.44E-01	6.20	
	Avg.	-	1.32E+06	2.36E+01	5.43		1.28E+06	1.19E+00	6.12	-	7.38E+05	5.41E+00	5.46	
	0		-	-	-			-	-	-				
	1	-	1.16E+06	6.25E+01	4.27		1.23E+06	4.40E+03	2.45	-	-			
2	2		1.03E+06	2.55E+01	4.61		1.10E+06	7.17E+00	5.18	-				
	3	-	1.02E+06	1.78E+01	4.76		1.10E+06	4.83E+00	5.36	-	-		-	
	Avg.	-	1.07E+06	3.53E+01	4.55	-	1.14E+06	1.47E+03	4.33	-	-	-	-	
	0	-	-	-	-			-	-	-	-			
	1	-	1.05E+06	5.00E-01	6.32	-	1.03E+06	6.33E+00	5.21	-	-	-	-	
3	2		1.15E+06	9.50E+00	5.08		1.16E+06	1.50E+00	5.89	-	-	-		
	3	-	1.06E+06	5.00E-01	6.33		1.07E+06	6.00E+00	5.25	-	-	-		
	Avg.	-	1.09E+06	3.50E+00	5.91	-	1.09E+06	4.61E+00	5.45	-	-			
MS2 MOLECULAR			RO (gc/mL)			NF1 (gc/mL)			NF2 (gc/mL)		
Experiment	Sample	Tank	Feed	Permeate	LRV	Tank	Feed	Permeate	LRV	Tank	Feed	Permeate	LRV	
	0	2.36E+07	-	-	-	1.36E+08		-	-	1.21E+08	-	-	-	
	1	-	1.01E+08	6.17E+03	4.21		9.72E+07	6.17E+03	4.20	-	7.67E+07	6.17E+03	4.09	
1	2	-	1.23E+08	6.17E+03	4.30		7.48E+07	6.17E+03	4.08	-	4.68E+07	6.17E+03	3.88	
	3		6.87E+07	6.17E+03	4.05		6.78E+07	6.17E+03	4.04	-	5.31E+07	6.17E+03	3.93	
	Avg.	-	9.76E+07	6.17E+03	4.19	-	7.99E+07	6.17E+03	4.11	-	5.89E+07	6.17E+03	3.97	
	0	-	-	-	-			-	-	-	-			
	1		1.77E+08	6.17E+03	4.46		1.57E+08	7.24E+04	3.34	-	-			
2	2	-	1.29E+08	6.66E+03	4.29		1.50E+08	6.17E+03	4.39	-	-			
	3	-	1.66E+08	6.17E+03	4.43		1.43E+08	6.17E+03	4.37	-	-			
	Avg.		1.57E+08	6.33E+03	4.39		1.50E+08	2.82E+04	4.03	-				
	0	-	-	-	-			-	-	-				
	1		1.19E+08	6.17E+03	4.29		1.72E+08	6.17E+03	4.45	-	-			
3	2	-	9.80E+07	6.17E+03	4.20		1.34E+08	6.17E+03	4.34	-	-			
	3	-	1.85E+08	6.1/E+03	4.48		1.41E+08	6.1/E+03	4.36	-				
	Avg.	-	1.34E+08	6.17E+03	4.32	-	1.49E+08	6.17E+03	4.38	-	-		-	
		1												
INISZ MOLECULAR (RNase)	Consul		RO (g	(c/mL)	151/	Test	NF1 (gc/mL)	181/	Teat	NF2 (gc/mL)	101	
Experiment	Sample	Tank	reea	rermeate	LKV	Tank	Feed	Permeate	LKV	Iank	reea	rermeate	LKV	
	1	4.40E+07	4 805 107	6 175 : 02	- 2.00	4.01E+07		6 175 : 02	2.75	6.18E+07		6 175:02	- 2 77	
1		-	4.89E+07	0.1/E+U3	3.90	-	3.46E+07	0.1/E+U3	3./5	-	3.03E+07	0.1/E+U3	3.//	
1 ¹	2	-	0./3E+0/	6.17E+03	4.04	-	3.55E+07	6.17E+03	3.70	-	2./3E+0/	6.17E+03	3.05	
		-	4.03E+07	6 17E+03	3.82	-	2.332+07	6 17E+03	3.03	-	2.03E+07	6 17E+03	3.69	
	0 AV6.	_	J.22L+J/	3.1/1403	3.32	_	3.332+07	3.1/1703	3.73	_	3.00E+07	3.1/2103	5.00	
	1	-	1 80F+09	1 46E+04	4.09	-	1 26E+08	9.41E+04	3 13	-	_		-	
2	2	_	1 11E+08	6 17E+03	4.05	_	1 15E+08	6 17E+03	4 27	_	_	-	_	
	3	-	1.42E+08	6.17E+03	4.36	-	1.16E+08	6.54E+03	4.25	_	_		-	
	Avg.	-	1.44E+08	8.98E+03	4.24	-	1.19E+08	3.56E+04	3.88	-	-			
	0	-	-	-	-	-	-	-	-	-	-		-	
	1	-	9.73E+07	6.17E+03	4.20	-	1.19E+08	6.17E+03	4.29	-	-	-		
3	2	-	1.15E+08	6.17E+03	4.27	-	1.13E+08	6.17E+03	4.26	-	-	-	-	
	3	-	1.18E+08	6.17E+03	4.28	-	1.04E+08	6.17E+03	4.23	-	-			
	Avg.		1.10E+08	6.17E+03	4.25		1.12E+08	6.17E+03	4.26	-	-			

Experiment	Nanostruc	ture Processing	Assay 1 ^a	Assay 2		
	Purification Stabilization		Mean ± SD (gc/mL)	Mean ± SD (gc/mL)		
1	Gel-purified	Non-stabilized	(2.1±0.3)×10 ¹³	(1.7±0.2)×10 ¹³		
2	Gel-purified	Non-stabilized	(8.5±0.8)×10 ¹³	(8.9±0.9)×10 ¹³		
3	Gel-purified	Oligolysine	(5.8±0.8)×10 ¹³	(5.9±0.8)×10 ¹³		

Table S7. Compa	arison of qPCR	assays for qua	antification of na	nostructure spiking stock.
-----------------	----------------	----------------	--------------------	----------------------------

^aNanostructure assay 1 was ultimately selected for quantifying DNA nanostructures in experimental samples.

Table S8. Nanostructure concentrations as determined by qPCR for experiment samples with **(top)** direct quantification (i.e., no nucleic acid extraction) without DNase treatment, **(middle)** direct extraction without DNase treatment, and **(bottom)** direct quantification (i.e., no nucleic acid extraction) with DNase treatment. Red font indicates concentrations that were below the limit of quantification (LoQ).

NS MOLECULAR (No Extraction)		RO (gc/mL)					NF1 (gc/mL)				NF2 (gc/mL)			
Experiment	Sample	Tank	Feed	Permeate	LRV	Tank	Feed	Permeate	LRV	Tank	Feed	Permeate	LRV	
	0	1.05E+05	-	-	-	6.56E+06	-	-	-	2.77E+05	-	-	-	
1 (Old, Gel-Purified, Non-Stabilized)	1	-	5.39E+06	6.20E+04	1.94	-	4.59E+05	6.20E+04	0.87		8.46E+04	6.20E+04	0.13	
	2	-	4.60E+06	6.20E+04	1.87	-	2.24E+05	6.20E+04	0.56	-	8.59E+04	6.20E+04	0.14	
	3	-	1.13E+06	6.20E+04	1.26	-	9.87E+04	6.20E+04	0.20		7.00E+04	6.20E+04	0.05	
	Avg.	-	3.71E+06	6.20E+04	1.69	-	2.61E+05	6.20E+04	0.54		8.02E+04	6.20E+04	0.11	
	0	-	-			-	-	-		-	-		-	
	1	-	2 27F+08	6 20E+04	3 56	-	7 70E+05	8 85F+04	0.94	-	-	_		
2	2	-	1 55E+08	6 20E+04	3.40	-	2 15E+05	1.01E+05	0.33	-	-			
(New, Gel-Purified, Non-Stabilized)	3	_	7.00E+07	6.20E+04	3.05	_	1.73E+05	7.64E+04	0.35			<u> </u>	-	
	Avg.	-	1.51E+08	6.20E+04	3.34	-	3.86E+05	8.86E+04	0.54	-	-			
	0	_	_	-	0.0.	_			0.0 .	_	_			
		_	4 14F+07	1 10E+05	2 58	_	1 27E+06	6 20E+04	1 31	_	_		-	
3	2	_	4.82F+07	6 20E+04	2.00		3 12F+05	7.06E+04	0.65				_	
(New, Gel-Purified, Stabilized)	3		2 16F+07	6 20E+04	2.55		1 35E+05	6 70F+04	0.05		<u> </u>	<u> </u>		
	Δνσ		3 71F+07	7 80F+04	2.67		5 72E+05	6.65E+04	0.50			<u> </u>		
	A¥5.	-	3./11+0/	7.001104	2.07	-	3.726703	0.032104	0.75	_			-	
		1	BO /				NE1 /				NE2 (
NS MOLECOLAR (Extraction)	Comple	Tank	RU (j	Bormonto	IBV	Tank	E Cood	Bormonto	IBV	Tank		zc/mL)	IBV	
Experiment	Sample	2.845.02	reeu	Permeate			reeu	Permeate			reeu	Permeate		
	1	3.84E+03		1.065+04	1 70	3.08E+06	1 425+05	1.065+04	1 1 2	3.44E+04	1.055+04	1.065+04	0.00	
1		-	7.675+05	1.00004	1.73	-	1.45E+03	1.065+04	1.15		1.065+04	1.065+04	0.00	
(Old, Gel-Purified, Non-Stabilized)	<u> </u>	-	1.0/6+05	1.316+04	1.//	-	4.050+04	1.065+04	0.04		1.065+04	1.065+04	0.00	
	3	-	4./3E+05	1.062+04	1.05	-	1.062+04	1.065+04	0.00		1.065+04	1.065+04	0.00	
	Avg.	-	6.33E+05	1.146+04	1.74	-	6.6/E+04	1.062+04	0.59	-	1.062+04	1.062+04	0.00	
	0	-	-			-		-						
2	1	-	5.87E+07	1.06E+04	3.74	-	4.38E+05	1.66E+04	1.42	-			-	
(New, Gel-Purified, Non-Stabilized)	2	-	3.64E+07	1.15E+04	3.50	-	4.64E+04	1.06E+04	0.64	-	-		-	
	3	-	2.31E+07	1.32E+04	3.24	-	1.28E+04	1.06E+04	0.08	-				
	Avg.	-	3.94E+07	1.18E+04	3.50	-	1.66E+05	1.26E+04	0.71				-	
	0	-	-			-	-	-		-	-		-	
3	1	-	9.22E+06	1.61E+04	2.76	-	1.99E+05	1.13E+04	1.25	-	-		-	
(New, Gel-Purified, Stabilized)	2	-	1.07E+07	1.53E+04	2.84	-	6.80E+04	1.06E+04	0.81	-	-	-	-	
	3	-	2.39E+06	1.17E+04	2.31	-	1.41E+04	1.06E+04	0.12	-	-	-	-	
	Avg.	-	7.44E+06	1.44E+04	2.64	-	9.37E+04	1.08E+04	0.73		-	-	-	
	-	-												
NS MOLECULAR (DNase)			RO (g	c/mL)		NF1 (gc/mL)				NF2 (gc/mL)				
Experiment	Sample	Tank	Feed	Permeate	LRV	Tank	Feed	Permeate	LRV	Tank	Feed	Permeate	LRV	
	0	-	-			-		-						
1	1	-	-			-		-				-		
(Old, Gel-Purified, Non-Stabilized)	2	-	-			-	-	-		-	-	-	-	
,	3	-	-			-		-		-	-	-	-	
	Avg.	-	-	-		-		-		-	-	-	-	
	0	-	-			-		-		-	-	-	-	
2	1	-	4.62E+05	6.20E+04	0.87	-	2.02E+05	6.20E+04	0.51	-	-	-		
(New, Gel-Purified, Non-Stabilized)	2	-	5.06E+05	6.20E+04	0.91	-	1.55E+05	9.87E+04	0.20		-	-		
, , , , , , , , , , , , , , , , , , , ,	3	-	5.33E+05	6.20E+04	0.93	-	1.77E+05	1.03E+05	0.24	-	-	-	-	
	Avg.	-	5.00E+05	6.20E+04	0.91	-	1.78E+05	8.79E+04	0.31	-	-	-	-	
	0	-	-	-		-	-	-		-	-	-	-	
3	1	-	6.40E+05	6.20E+04	1.01	-	2.56E+05	8.87E+04	0.46	-	-	-	-	
(New Gel-Purified Stabilized)	2	-	4.34E+05	6.20E+04	0.85	-	1.73E+05	7.49E+04	0.36	-	-	-	-	
(New, Ger-Furnied, Stabilized)	3	-	4.68E+05	6.20E+04	0.88	-	1.32E+05	6.20E+04	0.33			-	-	
	Δνσ	-	5.14E+05	6.20E+04	0.91	-	1.87E+05	7.52E+04	0.38	-	-	_	-	

References

- Albergamo, V.; Blankert, B.; Cornelissen, E. R.; Hofs, B.; Knibbe, W.-J.; van der Meer, W.; de Voogt, P. Removal of Polar Organic Micropollutants by Pilot-Scale Reverse Osmosis Drinking Water Treatment. Water Res 2019, 148, 535–545. https://doi.org/https://doi.org/10.1016/j.watres.2018.09.029.
- (2) Albergamo, V.; Escher, B. I.; Schymanski, E. L.; Helmus, R.; Dingemans, M. M. L.; Cornelissen, E. R.; Kraak, M. H. S.; Hollender, J.; de Voogt, P. Evaluation of Reverse Osmosis Drinking Water Treatment of Riverbank Filtrate Using Bioanalytical Tools and Non-Target Screening. Environ Sci (Camb) 2020, 6 (1), 103–116. https://doi.org/10.1039/C9EW00741E.
- (3) Yangali-Quintanilla, V.; Maeng, S. K.; Fujioka, T.; Kennedy, M.; Amy, G. Proposing Nanofiltration as Acceptable Barrier for Organic Contaminants in Water Reuse. J Memb Sci 2010, 362 (1), 334– 345. https://doi.org/https://doi.org/10.1016/j.memsci.2010.06.058.
- (4) Sahoo, A.; Puhan, M. R.; Vasave, D. B.; Borle, N. G.; Sutariya, B.; Karan, S. Harnessing the Potential of Thin Film Composite Membranes for Efficient Treatment of Aqueous Streams Containing Polar Aprotic Organic Solvents. Chemical Papers 2024, 78 (2), 793–808. https://doi.org/10.1007/s11696-023-03121-7.
- (5) Boussu, K.; Zhang, Y.; Cocquyt, J.; Van der Meeren, P.; Volodin, A.; Van Haesendonck, C.; Martens, J. A.; Van der Bruggen, B. Characterization of Polymeric Nanofiltration Membranes for Systematic Analysis of Membrane Performance. J Memb Sci 2006, 278 (1), 418–427. https://doi.org/https://doi.org/10.1016/j.memsci.2005.11.027.
- (6) Park, N.; Kwon, B.; Kim, I. S.; Cho, J. Biofouling Potential of Various NF Membranes with Respect to Bacteria and Their Soluble Microbial Products (SMP): Characterizations, Flux Decline, and Transport Parameters. J Memb Sci 2005, 258 (1), 43–54. https://doi.org/https://doi.org/10.1016/j.memsci.2005.02.025.
- (7) Choi, J.-H.; Fukushi, K.; Yamamoto, K. A Study on the Removal of Organic Acids from Wastewaters Using Nanofiltration Membranes. Sep Purif Technol 2008, 59 (1), 17–25. https://doi.org/https://doi.org/10.1016/j.seppur.2007.05.021.
- (8) Dalwani, M.; Benes, N. E.; Bargeman, G.; Stamatialis, D.; Wessling, M. A Method for Characterizing Membranes during Nanofiltration at Extreme PH. J Memb Sci 2010, 363 (1), 188–194. https://doi.org/https://doi.org/10.1016/j.memsci.2010.07.025.
- (9) Nguyen, L. D.; Gassara, S.; Bui, M. Q.; Zaviska, F.; Sistat, P.; Deratani, A. Desalination and Removal of Pesticides from Surface Water in Mekong Delta by Coupling Electrodialysis and Nanofiltration. Environmental Science and Pollution Research 2019, 26 (32), 32687–32697. https://doi.org/10.1007/s11356-018-3918-6.