Electronic Supplementary Information

A report on arsenic removal from water via adsorption of arsenomolybdate complex on S-CuFe₂O₄ adsorbents[†]

Ejaz Hussain^a*, Maryam Sultana^a, Muhammad Zeeshan Abid^a, Aqsa Khan Buzdar^a, Hamdy Khamees Thabet^b, Salah M. El-Bahy^c, Muhammad Jalil^a, Abdul Rauf^a, Zeinhom M. El-Bahy^d, Khezina Rafiq^a*

^aInstitute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.

^bDepartment of Chemistry, College of Sciences and Arts, Northern Border University, Rafha–91911, Saudi Arabia.

^cDepartment of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif-21944, Saudi Arabia.

^dDepartment of Chemistry, Faculty of Science, Al-Azhar University, Nasr City–11884, Cairo, Egypt.

Corresponding authors email: <u>ejaz.hussain@iub.edu.pk; khezina.rafiq@iub.edu.pk</u>

Section I

List of Abbreviations

AMC = Arsenomolybdate complex Emu/g = Electromagnetic unit As⁺³ = Arsenic (III) As⁺⁵ = Arsenic (IV) K_L = Langmuir model K_F = Freundlich model K_T = Temkin model K_d = Intra-particle diffusion K₁ = Pseudo-first order reaction K₂ = Pseudo-second order reaction LA = Layyah

Conformation through arsenic Quick TM kit:

The reaction bottles were filled with the water sample (treated with adsorbent) up to the marked line. The first chemical labeled as level 3 pink teaspoons (in the kit box) was then added to reaction bottles. The reaction bottles were then tightly closed and shaken for 10 seconds to allow the material to settle down to overcome the sulfide interference. Then, the reaction bottles were filled with three level white teaspoons of chemical no.3 zinc mesh and were sealed tightly and vigorously shaken for approximately five seconds. After then, the arsenic test strip was precisely fitted into the turret, so that the red line imprinted on the strip was placed behind the reaction bottles. The yellow cape has been removed and replaced with a white cap that contains an arsenic testing strip inside. During the experiment stopwatch was used to monitor the changes during the process. The reaction was completed in around ten minutes and the white strip was carefully removed and the color that appeared matched exactly with the QuickTM Easy Read TM color chart. In order to identify the treated solution and to measure the quantity of the residual arsenic, a test strip and a standard chart from an arsenic kit was used. The results were then observed and recorded carefully.

Section II

Chemical equation for AMC:

 $Na_{2}HAsO_{4}.7H_{2}O + (NH_{4})MoO_{4} + C_{8}H_{4}K_{2}O_{12}Sb_{2} + C_{6}H_{8}O_{6} + H_{2}SO_{4}$

$Na_3[As_3Mo_2O_{15}].10H_2O$ (AMC)

 $\begin{array}{c} Tetrahedral \\ site \ contain \\ M^{2+}Fe^{2+,3+} \end{array}$

 $\begin{array}{c} Octahedral \\ site \ contain \\ Cu^{2+}M^{2+,3+} \end{array}$

]					
Parameters to be optimized	Temp (°C)	Contact time(min)	рН	Adsorbent dose (mg)	Initial Arsenic concentration (mg/L)	Variables parameters	Optimum
Solution pH	25	30		50	10	3 to 9	6.5
Temperature (°C)		30	6.5	50	10	20–60 °C	35 °C
Contact time (min)	35		6.5	50	10	1-30 min	20 min
Concentration (mg/L)	35	20	6.5	50		1–20 ppm	10 ppm
Adsorption dose (mg)	35	20	6.5		10	10-70 mg	55 mg

Table S1: The adsorption parameters used during the removal of arsenic from solution

Section III

λ-max Determination of Arsenomolybdate Blue complex:

Ultraviolet (UV) spectrophotometer was initially switched on, then after five minutes, a wavelength of 400 nm was set as the initial wavelength. Distilled water was then used for calibrating the instrument. Sample solution was then placed in a UV spectrophotometer, and initial wavelength was calculated. The absorbance has been determined by maintaining a difference of 10 nm at regular intervals. The absorbance started to rise until it reached a certain limit, at which it began to drop. Lambda max (λ) values for the 10 ppm solution were obtained by plotting a graph of absorbance (A) against time (t), which was obtained from all absorbance measurements completed up to this point at regular intervals. Because of the different concentration ofAs⁺⁵ in the solution, the process was applied to each sample which included the untreated complex, and the absorbance value fluctuated throughout the process. Maximum absorbance value measured at 850 nm is about 0.825. Figure.6 (b) represents the λ -max of AMC.

Table S2: Kinetic parameters: Pseudo-first order, pseudo-second-order, Liquid film diffusion model and intra-particle diffusion model, Isotherm parameters for the Langmuir, Freundlich and Temkin model.

Kinetic models		Parameters	
Pseudo-first order	$K_1 = 6.5 \times 10^{-3}$	$q_e (mg/g)$	R ² =0.76418
	- 0.5	= 1.2893	it 0.70110
Pseudo-Second order	$K_2\left(\frac{g}{2}\right) = 10$	$q_e (mg/g)$	$R^2 = 0.99997$
	$^{2}(mg) 2.294 \times 10^{-5}$	= 180.83	
Intra-Particle diffusion	$K_{\rm d} (mg/gh) = 90.905$		$R^2 = 0.69763$
Liquid-film diffusion	$K_{\rm F} = 1.0243$		$R^2 = 0.65103$
Langmuir	$K_{\rm L}\left(\frac{L}{mg}\right) = 0.000311$	$q_{max} = 381.679$	$R^2 = 0.97021$
Freundlich	$K_{\rm F}\left(\frac{mg}{g}\right) = 512.125$	1/n = 0.2218	$R^2 = 0.9058$
Temkin(mg/gh ^{-0.5})	$K_{\rm T}\left(\frac{L}{mg}\right) = \frac{1}{5606.76}$		$R^2 = 0.87431$

Fable S3: EDX analysis weight and amount percentage of element in as-synthesized adsorber	ıt
$S-CuFe_2O_4$.	

Elements	Wt.%	At. %
S	2.51	2.63
0	25.8	54.6
С	0.60	1.68
Cu	24.2	12.38
Fe	46.8	28.26
Total	100	100

Table S4: Comparison of Freundlich, Langmuir and Temkin models parameters with reported adsorbent.

Sr.No	Adsorbent	K _F (L.mg ⁻¹)	K _L (mg.g ⁻¹)	K _T (L.mg ⁻¹)	Ref.
1	GNPs/CuFe ₂ O ₄	10.31	0.02		1
2	Pb(II)/NiFe ₂ O ₄	48.8	0.1878	1.19	2
3	$As(V)/0.8Ni_{0.5}Zn_{0.5}Fe_2O_4/0.2SiO_2$	98.3787	114.6789	5.5601	3
4	Porous copper ferrite foam	29.28	0.32		4
5	Graphene oxide/CuFe ₂ O ₄ foam	16.49	0.046		5
6	Cobalt ferrite nanoparticles	175.56			6
7	S-CuFe ₂ O ₄	512.125	0.000311	5606.76	This work

Adsorbent	рН	Adsorption capacity of As ³⁺ (mg/g)	Adsorption capacity of As ⁵⁺ (mg/g)	Ref.
CuFe ₂ O ₄ binary oxide	7	122.3	82.7	7
GNPs/Fe-Mg oxide	7	103.9	103.9	1
FeMn _x /RGO	7	13.1	5.83	8
Mg _{0.27} Fe _{2.5} O ₄	5.2	127.4	83.2	9
Fe ₂ O ₄ /MnO ₂	6.2	2.89	3.84	10
MnFe ₂ O ₄ NCs		27.27		11
CuFe ₂ O ₄ (Powder)	7.3	41.2		12
CuFe ₂ O ₄ (Foam)	6.5	44.0	85.4	5
MnFe ₂ O ₄ (Powder)	7.5	94	90	13
CuFe ₂ O ₄	6.5	140.21	140.21	This work
S-CuFe ₂ O ₄	6.5	181.81	181.81	This work

Table S5: Comparison for adsorption capacities of CuFe₂O₄ and S-CuFe₂O₄.

Table S6: Parameters of VSM.

Adsorbent	H _c (Oe)	M _s (emu g ⁻¹)	M _r (emu g ⁻¹)	S (M _r /M _s)
CuFe ₂ O ₄	191.51	60.8	12.30	0.2023
S-CuFe ₂ O ₄	314.63	69.35	15.91	0.2294

Section IV

Sampling from field:

For the purpose of estimating and eliminating the total arsenic, 50water samples from various areas of District Layyah were collected. According to the survey, water obtained from hand pumps has slightly higher concentration of arsenic contents as compared to water collected from other sources such as tube well, motors etc. The average arsenic concentration in ground drinking water of District Layyah measured was 176.38 ppb (i.e. higher the limit set by World Health Organization recommendations). The survey results indicated that the community having high levels of arsenic in drinking water of the affected areas was carefully examined by our team members. To remove arsenic from contaminated water, 1g of synthesized S–CuFe₂O₄ adsorbent was used under nominal conditions. In District Layyah, where the average level of arsenic in water was 176.38 ppb, 1 g of as–synthesized adsorbent can give up to 272.4 gals of arsenic free–water. The maximum adsorption capacity of the aforementioned adsorbent measured was 181.81mg/g.

Section V

Protonation of AMC:

$$AMC^{3-} + H^+ \rightarrow HAMC^{2-} \tag{1}$$

$$AMC^{3-} + 2H \rightarrow H_2 AMC_4^{-} \tag{2}$$

$$AMC_4^{3-} + 3H \rightarrow H_3 AMC_4^{-} \tag{3}$$

Arsenate (AMC) absorption:

$$M + AMC^{3-} + 2H^+ \rightarrow MH_2AMC \quad (4)$$

$$M + AMC^{3-} + H^+ \rightarrow MHAMC^- \tag{5}$$

$$M + AMC^{3-} + H^+ \rightarrow MAsO_4^{2-} \tag{6}$$

Sample	Lastian	Samuel	Source	As in	Abs*	Abs**	As	GPS (Meterk/Handheld-ZL-180)			
Code	Location	Source	depth	(ppb)	AMC	AMC	Tests	E°	Ν	Ele.	
LA-1	Kharal azeem	Hand pump	80	250	0.160	0.000	0	70°56'23.6720	30°57'53.1000	147m	
LA-2	Khan wala	Tube well	200	100	0.070	0.000	0	70°56'23.6630	30°57'53.800	125	
LA-3	Hafiz abad	Motor pump	160	110	0.090	0.000	0	70°56'23.6690	30°57'53.830	122	
LA-4	Shah jamal	Hand pump	95	280	0.170	0.000	0	70°56'23.6698	30°57'53.840	133	
LA-5	Jaman shah	Hand pump	90	200	0.140	0.000	0	70°56'23.6710	30°57'53.855	124	
LA-6	Jaisal	Motor pump	150	160	0.130	0.000	0	70°56'23.6730	30°57'53.850	135	
LA-7	Shah sultan	Hand pump	60	180	0.120	0.000	0	70°56'23.6750	30°57'53.855	126	
LA-8	Wanjhery wala	Hand pump	70	300	0.180	0.000	0	70°56'23.6780	30°57'53.860	137	
LA-9	Hazar shah wala	Motor pump	150	130	0.090	0.000	0	70°56'23.6790	30°57'53.865	142	
LA-10	Dasti wala	Hand pump	80	190	0.150	0.000	0	70°56'23.6795	30°57'53.870	133	
LA-11	Basti malwana	Hand pump	75	240	0.145	0.000	0	70°56'23.6830	30°57'53.875	127	
LA-12	Noor abad	Tube well	300	150	0.135	0.002	0-3	70°56'23.6850	30°57'53.880	135	
LA-13	Mohalla arifabad	Hand pump	60	100	0.070	0.000	0	70°56'23.6870	30°57'53.889	136	
LA-14	Faqirwala	Tube well	350	105	0.060	0.003	0-4	70°56'23.6890	30°57'53.890	127	
LA-15	Noon wala	Hand pump	70	120	0.101	0.000	0	70°56'23.6940	30°57'53.895	115	
LA-16	Mohalla faizabad	Hand pump	90	110	0.650	0.000	0	70°56'23.6950	30°57'53.900	120	
LA-17	Basti machi	Tube well	350	80	0.050	0.003	0-4	70°56'23.6960	30°57'53.910	127	
LA-18	Paki sagwan wali	Hand pump	60	190	0.135	0.000	0	70°56'23.6970	30°57'53.925	119	
LA-19	Basti wasava shumali	Tube well	200	80	0.050	0.000	0	70°56'23.6980	30°57'53.930	120	
LA-20	Basti sawan wala	Hand pump	80	145	0.0135	0.000	0	70°56'23.6990	30°57'53.935	133	

Table S7: Arsenic elimination from the ground drinking water of District Layyah using 1 g of S-CuFe₂O₄ adsorbent

LA-21	Dajal wala	Tubewell	200	140	0.350	0.000	0	70°56'23.6995	30°57'53.940	131
LA-22	Mohalla bilal nagger	Tube well	280	150	0.505	0.001	0-2	70°56'23.6999	30°57'53.945	125
LA-23	Marnay shah	Hand pump	80	100	0.070	0.000	0	70°56'23.6998	30°57'53.950	129
LA-24	Tibbi Maharan	Tube well	300	130	0.130	0.000	0	70°56'23.7156	30°57'53.955	130
LA-25	Litti wala	Hand pump	80	180	0.160	0.000	0	70°56'23.7169	30°57'53.955	128
LA-26	Basti Deen pur	Hand pump	90	250	0.170	0.000	0	70°56'23.7173	30°57'53.956	130
LA-27	Mahi wala	Tube well	300	140	0.131	0.000	0	70°56'23.7174	30°57'53.960	132
LA-28	Gujie kot sultan	Tube well	200	110	0.070	0.000	0	70°56'23.7176	30°57'53.965	134
LA-29	Riaz abad	Hand pump	95	180	0.160	0.000	0	70°56'23.7179	30°57'53.970	144
LA-30	Norang wala	Hand pump	75	200	0.140	0.000	0	70°56'23.7135	30°57'53.975	110
LA-31	Mangla	Hand pump	80	280	0.170	0.001	0-2	70°56'23.7138	30°57'53.980	115
LA-32	Shahadat wala	Tube well	200	180	0.160	0.000	0	70°56'23.7139	30°57'53.985	124
LA-33	Yousaf wala	Hand pump	60	300	0.190	0.002	0-3	70°56'23.7235	30°57'53.990	135
LA-34	Rehman abad	Tube well	160	105	0.060	0.000	0	70°56'23.7236	30°57'53.940	138
LA-35	Basti shah nawaz	Hand pump	50	170	0.120	0.000	0	70°56'23.7245	30°57'53.899	137
LA-36	Tahli wala	Hand pump	75	280	0.170	0.001	0-2	70°56'23.7255	30°57'53.934	144
LA-37	Indus river	River		210		0.000	0	70°56'23.7256	30°57'53.980	135
LA-38	Mochi wala	Hand pump	60	300	0.190	0.002	0-3	70°56'23.7258	30°57'53.910	129
LA-39	Bypass	Motor pump	110	190	0.1850	0.000	0	70°56'23.7259	30°57'53.888	138
LA-40	Chandran	Hand pump	70	200	0.140	0.000	0	70°56'23.7266	30°57'53.899	139
LA-41	Layyah minor	Motor pump	105	180	0.160	0.000	0	70°56'23.7277	30°57'53.850	130
LA-42	Railway	Hand pump	65	200	0.140	0.000	0	70°56'23.7379	30°57'53.890	142
LA-43	THQ kot sultan	Motor pump	130	80	0.050	0.000	0	70°56'23.7480	30°57'53.870	141
LA-44	Pull Angra Road	Canal		180		0.000	0	70°56'23.7499	30°57'53.976	143
LA-45	Basti arain	Hand pump	80	170	0.140	0.000	0	70°56'23.7550	30°57'53.889	145

LA-46	Phar pur	Hand pump	70	160	0.120	0.000	0	70°56'23.7570	30°57'53.990	140
LA-47	Mohalla mohsin abad	Motor pump	120	200	0.140	0.000	0	70°56'23.7589	30°57'53.988	139
LA-48	Layyah minor	Hand pump	60	300	0.190	0.002	0-3	70°56'23.7599	30°57'53.1000	137
LA-49	Ada ijaz abad	Hand pump	80	280	0.170	0.001	0-2	70°56'23.7619	30°57'53.999	147
LA-50	Thal chowk/bail chowk	Hand pump	70	260	0.150	0.000	0	70°56'23.7624	30°57'53.990	143

Survey	Samples*			Survey location					
month		Samples*	Kot	Kot Hafiz Shah israal		Jaman shah	Kharal azeem		
			sultan	abad	Shan Jamai	Jaman Shan	Kilalal azeelli		
		Max As (ppb)	260	200	380	290	400		
September	September 25	Min As (ppb)	130	80	140	160	170		
		Average	195	140	260	225	285		
		Max As (ppb)	350	290	190	350	250		
October	15	Min As (ppb)	150	120	50	150	130		
		Average	250	205	120	250	190		
		Max As (ppb)	370	400	300	290	190		
November	10	Min As (ppb)	180	180	120	160	80		
		Average	275	290	210	225	135		

Table S8: Survey results and reports obtained from District Layyah (Punjab. Pakistan)

 Table S9: Team members involved in survey and project

Sr. No.	Name of Survey Team	Designation/Responsibilities
1	Dr. Ejaz Hussain	Project administration/supervision
2	Meryam Sultana	Research student, Sampling/field assistant
3	Muhammad Zeeshan Abid	Research student, Results Interpretation
4	Aqsa Khan Buzdar	Research student/Field Assistant
5	Muhammad Jalil	Research student/Driver
6	Prof. Dr. Abdul Rauf	Instrumental access
7	Dr. Khezina Rafiq	Field coordinator/administrator

Sr. No.	Name of Volunteers	Volunteer participation/services
1	Muhammad Zeeshan	Contributed as local guide/translator for public counseling in native languages
2	Muhammad Arbaz	Volunteer serve tea and breakfast
3	Farhan Ali	Volunteer serve as jockey person/entertainment/songs for survey team
4	Sobia Ramzan	She voluntarily serves with traditional lassi

Table S10: Persons that were hired from areas of survey.

Note: All authors thanks and acknowledges the volunteers services. Services of these members were voluntarily contributed on the basis of their own wishes'

Reference:

- 1. D. D. La, J. M. Patwari, L. A. Jones, F. Antolasic and S. V. Bhosale, Fabrication of a GNP/Fe– Mg binary oxide composite for effective removal of arsenic from aqueous solution, *ACS omega*, 2017, **2**, 218-226.
- 2. B. C. J. Mary, J. J. Vijaya, M. Bououdina, L. J. Kennedy, L. Khezami and A. Modwi, Adsorption ability of aqueous lead (II) by NiFe2O4 and 2D-rGO decorated NiFe2O4 nanocomposite, *Journal of Materials Science: Materials in Electronics*, 2023, **34**, 845.
- L. R. Liu RuiJiang, S. X. Shen XiangQian, L. H. Li HongXia, Z. X. Zhang XiNai and W. L. Wang LiWei, Performances of methyl blue and arsenic (V) adsorption from aqueous solution onto magnetic 0.8 Ni0. 5Zn0. 5Fe2O4/0.2 SiO2 nanocomposites, 2014.
- 4. L.-K. Wu, H. Wu, Z.-Z. Liu, H.-Z. Cao, G.-Y. Hou, Y.-P. Tang and G.-Q. Zheng, Highly porous copper ferrite foam: A promising adsorbent for efficient removal of As (III) and As (V) from water, *Journal of Hazardous Materials*, 2018, **347**, 15-24.
- 5. L.-K. Wu, H. Wu, H.-B. Zhang, H.-Z. Cao, G.-Y. Hou, Y.-P. Tang and G.-Q. Zheng, Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water, *Chemical Engineering Journal*, 2018, **334**, 1808-1819.
- 6. A. Giri, E. Kirkpatrick, P. Moongkhamklang, S. Majetich and V. Harris, Photomagnetism and structure in cobalt ferrite nanoparticles, *Applied physics letters*, 2002, **80**, 2341-2343.
- 7. G. Zhang, Z. Ren, X. Zhang and J. Chen, Nanostructured iron (III)-copper (II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions, *Water Research*, 2013, **47**, 4022-4031.
- 8. J. Zhu, Z. Lou, Y. Liu, R. Fu, S. A. Baig and X. Xu, Adsorption behavior and removal mechanism of arsenic on graphene modified by iron–manganese binary oxide (FeMnO_x/RGO) from aqueous solutions, 2015.
- D. D. La, T. A. Nguyen, L. A. Jones and S. V. Bhosale, Graphene-Supported Novel Adsorbents for Spinel Arsenic CuFe Removal 2 Composites: in Aqueous Media, *Fluorescent Probes and Sensors*, 2018, 17, 219.
- 10. W. Tang, Y. Su, Q. Li, S. Gao and J. K. Shang, Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation, *Water research*, 2013, **47**, 3624-3634.
- 11. W.-H. Xu, L. Wang, J. Wang, G.-P. Sheng, J.-H. Liu, H.-Q. Yu and X.-J. Huang, Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water, *CrystEngComm*, 2013, **15**, 7895-7903.
- 12. S. S. Hassan, A. H. Kamel, A. A. Hassan, A. E.-G. E. Amr, H. Abd El-Naby, M. A. Al-Omar and A. Y. Sayed, CuFe2O4/polyaniline (PANI) nanocomposite for the hazard mercuric ion removal: synthesis, characterization, and adsorption properties study, *Molecules*, 2020, **25**, 2721.
- 13. S. Zhang, H. Niu, Y. Cai, X. Zhao and Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4, *Chemical engineering journal*, 2010, **158**, 599-607.