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Appendix A. Previous studies with data-reconciliation-related content

This appendix presents an overview of published studies which applied data reconciliation to wastewater 

treatment plants.

Table A1. Data reconciliation and related topic applied to WWTPs

# Study Data reconciliation-related content System software

Direct application to process data of WWTP

1 (Strous et al., 
1998)

Calculating stoichiometry of conversions of 
carbon and nitrogen compounds by Anammox 

Lab-scale reactor Macrobal

2 (Nowak et al., 
1999)

Validating operational data for modelling 
purposes

Pilot WWTP

3 (Meijer et al., 
2002)

Validating and reconciliation data for modelling 
purposes

Full-scale municipal 
WWTP

Macrobal

4 (Puig et al., 
2008)

Operational condition calculation (e.g. solid 
retention time, oxygen requirement) and 
benchmarking using reconciled data

Full-scale municipal 
WWTP

Macrobal

5 (Lim et al., 
2012)

Estimate N2O emission from the membrane 
reactor using reconciled flow data

Pilot municipal 
WWTP

6 (Villez et al., 
2013a)

Bilinear data reconciliation applied to flow and 
total suspended solid measurements to detect 
sensor fault

Simulated data from 
BSM1_LT

Matlab

7 (Lotti et al., 
2014)

Calculating stoichiometry of conversions of 
carbon and nitrogen compounds by Anammox.

Lab-scale reactor Macrobal

8 (Meijer et al., 
2015)

Reconciled data for modelling calibrating and 
validating

Full-scale municipal 
WWTP

Macrobal

9 (Lee et al., 
2015)

Demonstrate data reconciliation, raising the 
importance of reliable data

Simulated data from 
GPS-X

10 (Behnami et 
al., 2016)

Evaluating the performance of a WWTP using 
reconciled data

Full-scale industrial 
WWTP

Matlab

Redundancy analysis and variable classification

12 (Villez et al., 
2013b)

Application of a graph-theoretical method for 
the
classification of variables for a given sensor 
configuration

Simulated data from 
BSM1_LT

Matlab

13 (Spindler, 
2014)

Deriving redundancy mass balances for a given 
WWTP configuration given measured and 
unmeasured variables (flows and 
concentrations)

WWTP Sage 
Mathematics

14 (Villez et al., 
2016)

Method to obtain Pareto optimal flow sensor 
layouts in terms of cost, observability, and 

WWTP Matlab
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# Study Data reconciliation-related content System software
redundancy that enable fault detection for a 
given WWTP configuration

Substance flow analysis

16 (Sokka et al., 
2004)

Balanced data for examining the flows of 
nitrogen and phosphorus in the municipal waste

Municipality STAN

17 (Benedetti et 
al., 2006)

Balancing data for water, BOD, COD, total 
nitrogen, total phosphorus, Zn of the 
wastewater collection and treatment system

Sewer catchment

18 (Yoshida et 
al., 2015)

Examining the fate of organic carbon, heavy 
metals and organic pollutants in a WWTP

Full-scale municipal 
WWTP

STAN

19 (Kim et al., 
2017)

Substance flow analysis of mercury from 
industrial and municipal wastewater treatment 
facilities

Full-scale industrial 
WWTP

STAN

Others

20 (Rieger et al., 
2010)

Mass balance-based to validate historical data 
from a WWTP for modelling purposes

WWTP



4

Appendix B. Experimental design procedure for data reconciliation 

B1. Overview

The experimental design procedure for practical application to wastewater treatment processes of Le et 

al. (2018) is summarized in Figure B1. The first three steps comprise the gathering of case-study-specific 

input information: the main goals and corresponding key variables are defined first (Step 1), followed by 

the set-up of an incidence matrix and mass balances based on the process flow diagram (Step 2), and 

by the inventory of available data (Step 3). The gathering of input information, which is most time-

consuming, is followed by a fully automated procedure for finding optimal solutions. It is checked up-

front that the combination of the given list of key variables and the given set of mass balances are 

relevant in the sense that key variables are identifiable (Step 4). Mass balances and their corresponding 

variables are clustered in groups of overlapping mass balances (Step 5), which greatly improves the 

efficiency of finding all solutions, i.e. sets of additionally measured variables that satisfy the defined main 

goal (Step 6). Steps 4-6 rely on a comprehensive redundancy analysis, following the method of van der 

Heijden et al. (1994). Among all solutions, a selection is made of optimal ones in terms of additional 

measurement costs and accuracy of identified key variables (Step 7).  Step 4 to Step 7 were 

implemented in MATLAB 2014b (MathWorks®). More details on the individual steps are provided in Le 

et al. (2018).
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Figure B1. Experimental design procedure for the selection of sets of additionally measured variables that allow 
the identification of key variables (Le et al., 2018).

B2. Pareto-optimal solutions balancing cost and accuracy 

The additional measurement costs and the accuracy of identified key variables were quantified through 

a cost function  and an accuracy function , respectively, which are calculated according to Le et. al. 𝑓𝐶 𝑓𝑉

(2018):

 (Eq. B1)
𝑓𝐶 =

𝑛𝑃

∑
𝑗 = 1

𝑤𝑎𝑗𝑎𝑗

(Eq. B2) 
𝑓𝑉 =

1
𝑛𝑘

𝑛𝑘

∑
𝑖 = 1

𝑣𝑖/𝑣𝑟
𝑖 
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in which 

 is the number of potential additional measurements  𝑛𝑃 

  aj is a binary number indicating whether a potential additional measured variable with index j (=1,… 

) is measured (1) or not measured (0) (see Tables C2b, C3b, C4b and C5b for application to the 𝑛𝑃

case studies). 

  is the cost of additional measurement j (given in Table C1, C2a, C3a, C4a and C5a for the case 𝑤𝑎𝑗

studies). 

 is the number of key variables.𝑛𝑘 

  is the variance of new estimates (after data reconciliation) of key variables of a solution 𝑣𝑖

  is the variance of new estimates of key variable when the reference solution is implemented, i.e. 𝑣𝑟
𝑖

when all additional measurements are performed.

  and  were calculated from measurement uncertainty σ of the reported measured data (Table 𝑣𝑖 𝑣𝑟
𝑖

C1, C2a, C3a, C4a and C5a for the case studies) according to the procedures specified in the 

Supplementary Information of Le et al. (2018).
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Appendix C. Measured data sets and Pareto-optimal solutions for the case studies considered

C1. Case study 1: Meijer et al. (2002), average data of one year

Table C1. Measured data set used for data reconciliation by (Meijer et al., 2002) - case study 1 
Q
[m3day-1]

TP
[g Pm-3]

COD
[g CODm-3]

TKN
[g Nm-3]

NOx
[g Nm-3]

variable 

 stream m wa σ m wa σ m wa σ m wa σ m wa σ

in influent 1* 10 2,000 1* 10 100 1* 10 2000 1* 10 1000 1* 10 2
ef effluent 10 2,000 1* 10 10 1* 10 2000 1* 10 1000 1* 10 2
ce inflow centrifuge 1* 10 100 1* 10 100 1* 10 100 1* 10 50 1* 10 2
cent outflow centrifuge 10 100 1* 10 100 1* 10 100 1* 10 50 10 2
ex excess sludge 1* 10 100 1* 10 100 10 100 10 50 1* 10 2

Note
Q = flow rate, TP = total phosphorus, COD = chemical oxygen demand, TKN = Kjeldahl nitrogen, NOx = nitrate.
m = measurement availability: 1 = measured, empty = unmeasured. 
* variable included in initial data set provided by (Meijer et al., 2002)
wa = cost of measurements (assumed to be the same for all measurements) 
σ = magnitude of measurement uncertainty (derived from reported measured data)
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C2. Case study 2: Meijer et al. (2002), data from measurement campaign of 8 days

Table C2a. Measured data set used for data reconciliation by Meijer et al. (2002) - case study 2 
Q

[m3day-1]
TP

[g Pm-3]
TKN

[g Nm-3]Short Name
m wa σ m wa σ m wa σ

in influent 1* 10 1,000 1* 10 50 1* 10 500
r1 R1 to R2 10 1,000 1 10 50 1 10 500
rc recycle R3 to R2 1 10 1,000 1 10 50 1 10 500
r2 R2 to R3 10 1,000 1 10 50 10 500
r3 R3 to clarifier 10 1,000 10 50 10 500

rt12 clarifier CL12 to R2 and TH 1 10 1,000 1 10 50 1 10 500
ef effluent 10 1,000 1 10 50 10 500

rt34 clarifier CL34 to R1 and R2 1 10 1,000 1 10 10 1 10 10
th inflow thickening 1 10 100 1 10 50 10 50

over overflow thickening TH 10 100 10 50 1 10 50
ce input centrifuge 1* 10 100 1* 10 50 10 50

cent output centrifuge 10 100 1* 10 50 1* 10 50
ex excess sludge 1* 10 100 10 50 10 50

Note: 
Q =  flow rate, TP = total phosphorus concentration, TKN = Kjeldahl nitrogen concentration
m = measurement availability, 1 = measured, empty = unmeasured
* variable included in initial data set provided by (Meijer et al., 2002)
wa = cost of measurements (assumed to be the same for every measurement)
σ = magnitude of measurement uncertainty (derived from reported measured data)

Table C2b. Pareto-optimal solutions from experimental design procedure applied to the setup of Meijer et al. 
(2002). For all potential additional measurements, it is indicated whether (1) or not (empty) they should 
be included in the measurement campaign.

# a fc fv Qr1 Qr2 Qr3 Qrc Qrt12 Qrt34 Qef Qth Qce Qover Qcent Qex

1 7 70 1.96 1 1 1 1 1 1 1
2 8 80 1.55 1 1 1 1 1 1 1 1
3 9 90 1.39 1 1 1 1 1 1 1 1 1
4 10 100 1.24 1 1 1 1 1 1 1 1 1 1
5 11 110 1.13 1 1 1 1 1 1 1 1 1 1 1
6 12 120 1.05 1 1 1 1 1 1 1 1 1 1 1 1

# = solution number, a = additional measurements, fc = cost of additional measurements (the lower the better), fv = accuracy 
of the solution (the smaller the more accurate)
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C3. Case study 3: Puig et al. (2008)

Table C3a. Measured data set used for data reconciliation by Puig et al. (2008) 
Q

[m3day-1]
TP

[g Pm-3]
COD

[g CODm-3]
NO

[g Nm-3]
TKN

[g Nm-3]Short Name
m wa σ m wa σ m wa σ m wa σ m wa σ

in influent 1* 10 1000 1* 10 100 1* 10 500 1* 10 2 1* 10 250
se stripper effluent 1 10 100 1 10 10 1 10 50 1 10 2 1 10 25
2 outflow of anaerobic tank 1 10 1000 1 10 100 10 500 10 2 10 250
ras return activated sludge 1 10 1000 1 10 200 10 500 10 2 10 250
a sludge recycling from anoxic tank 1 10 100 1 10 100 10 50 10 2 10 25
6 outflow of anoxic tank 1 10 3000 1 10 300 10 1500 10 2 10 750
7 out flow of alternate aerated tank 1 10 3000 10 300 10 1500 10 2 10 750

c sludge recycling from aerobic tank 
c 1 10 2000 10 200 10 1000 10 2 10 500

b sludge recycling from aerobic tank 
b 1 10 2000 1 10 200 10 1000 10 2 10 500

8 settled sludge from clarifiers 1 10 1000 1 10 100 10 500 10 2 10 250
ef effluent 1 10 1000 1* 10 100 1* 10 500 1* 10 2 1* 10 250
was wasted activated sludge 1 10 10 1 10 10 1 10 5 1 10 2 1 10 2.5
Note
Q = flow rate, TP = total phosphorus, COD = chemical oxygen demand, TKN = Kjeldahl nitrogen, NO = nitrate.
m = measurement availability: 1 = measured, empty = unmeasured
* variable included in initial data set (assuming that only influent flow and concentration were measured)
wa = cost of measurements (assumed to be the same for every measurement)
σ = magnitude of measurement uncertainty (derived from reported measured data)

Table C3b. Pareto-optimal solutions provided by the experimental design procedure to identify all key variables. 
Additional measurement should be included in measurement campaign (1) or not (empty).

Q TP COD NO TKN
# a fc fv se 2 ras a 6 7 c b 8 ef was se 2 ras a 6 b 8 was se was se was se was

1 11 110 1.24 1 1 1 1 1 1 1 1 1 1 1
2 13 130 1.08 1 1 1 1 1 1 1 1 1 1 1 1 1
3 15 150 1.04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 17 170 1.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 19 190 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 21 210 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 23 230 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 25 250 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

# = solution number, a = additional measurements, fc = cost of additional measurements (the lower the  better), fv = accuracy 
of the solution (the smaller the more accurate)
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C4. Case study 4: Meijer et al. (2015)

Table C4a. Measured data set used for data reconciliation by Meijer et al. (2015)
Q

[m3day-1]
TP

[g Pm-3]
COD

[g CODm-3]
TSS

[gm-3]PFD Short Name
m wa σ m wa σ m wa σ m wa σ

4 WWTP influent 1* 10 5,000 1* 10 50 1* 10 2000
5 Reject water 1 10 500 1 10 50 1 10 1000
7 Settled influent 10 5,000 1 10 50 1 10 2000

15 Inflow secondary clarifiers 10 5,000 1 10 2000 10 1000
17 WWTP effluent 10 5,000 1* 10 5 1* 10 100
23 Return activated sludge 1 10 5,000 1 10 2000 10 50000
26 Waste activated sludge (WAS) 1 10 100 1 10 50 1 10 1000 1 10 1000
27 Thickened WAS 1 10 10 10 10 1 10 1000 1 10 1000
28 Primary sludge 1 10 500 1 10 50 1 10 1000
31 Thickened primary sludge 1 10 50 10 20 1 10 1000
34 Digested sludge 1 10 50 10 50 1 10 1000
35 WWTP waste sludge 1 10 10 1 10 50 1 10 1500
37 Centrate WAS thickening 10 100 10 50 10 500 1 10 1000
38 Centrate dewatering 10 50 10 50 10 500
39 Overflow primary thickener 10 1,000 10 100 10 500
40 Process water 1* 10 5 x 10 2 x 10 2
43 Biogas 1* 10 500 x 10 10 1* 10 1000

Note:
Q = flow rate, TP = total phosphorus, COD = chemical oxygen demand, TSS = total suspended solids
m = measurement availability: 1 = measured, empty = unmeasured
* variable included in initial data set (assuming that influent, effluent, process water and biogas flow and concentration were 
measured)
wa = cost of measurements (assumed to be the same for every measurement)
σ = magnitude of measurement uncertainty (derived from reported measured data)

Table C4b. Pareto-optimal solutions provided by the experimental design procedure to identify all key variables. 
Additional measurement should be included in measurement campaign (1) or not (empty).

Q TP COD TSS
# a fc fv

5 7 15 17 23 26 27 28 31 34 35 37 38 39 5 7 15 23 26 28 35 5 7 26 27 28 31 34 35 26 27 37
1 18 180 2.21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 19 190 1.47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 20 200 1.25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 21 210 1.16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 22 220 1.09 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 23 230 1.07 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 24 240 1.05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 25 250 1.04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 26 260 1.03 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 27 270 1.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 28 280 1.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 29 290 1.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X 29 29 1.38 1 1* 1* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

# = solution number, a = additional measurements, fc = cost of additional measurements (the lower the  better), fv = accuracy 
of the solution (the smaller the more accurate). x = a solution when two more crucial additional variables (*) were added to 
the set of measurements used by Meijer et al. (2015)
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C5. Case study 5: Behnami et al. (2016)

Table C5a. Measured data set used for data reconciliation by Behnami et al. (2016).
Q [m3day-1]PFD Short Name
m wa σ

in1 Influent process wastewater 1* 10 500
in2 Sanitary wastewater 1* 10 100
1 Screened influent 1 10 500
2 API 1 10 500
3 Equalization 1 10 500
4 DAF 1 10 500
5 Aeration 1 10 1,000
6 Clarifier 1 1 10 500
7 Clarifier 2 1 10 500
8 Treated effluent 1 10 500
9 Oily sludge from API 1 10 2
10 Sand & grit from API 1 10 2
11 Return effluent from DAF 1 10 2
12 Oily sludge from DAF 1 10 2
13 Returned activated sludge 1 10 500
14 Waste sludge clarifier 1 1 10 2
15 Waste sludge clarifier 2 1 10 2
16 Backwash water 1 10 2
17 Backwash eff 1 10 2

Q = flow rate
m = measurement availability: 1 = measured, empty = unmeasured
* variable included in initial data set (assuming that influents were measured)
wa = cost of measurements (assumed to be the same for every measurement)
σ = magnitude of measurement uncertainty (derived from reported measured data)

Table C5b. Pareto-optimal solutions provided by the experimental design procedure to balance all key variables.
# a fc fv Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

1 7 70 1.72 1 1 1 1 1 1 1
2 8 80 1.41 1 1 1 1 1 1 1 1
3 9 90 1.41 1 1 1 1 1 1 1 1 1
4 10 100 1.25 1 1 1 1 1 1 1 1 1 1
5 11 110 1.15 1 1 1 1 1 1 1 1 1 1 1
6 12 120 1.09 1 1 1 1 1 1 1 1 1 1 1 1
7 13 130 1.09 1 1 1 1 1 1 1 1 1 1 1 1 1
8 14 140 1.04 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 15 150 1.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 17 170 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
# = solution number, a = additional measurements, fc = cost of additional measurements (the lower the  better), fv = accuracy 
of the solution (the smaller the more accurate)
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