Supplementary Information

Effects of Chloride Transport on the Bioelectrochemical Remediation of Nitrate Contaminated Groundwater

Hanyu Tang, McKenzie Burns, Mohan Qin*

Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison,

Wisconsin 53706, USA

* Corresponding author. E-mail: mohan.qin@wisc.edu

Figure S1. The schematic of membrane-based bioelectrochemical system (MBES).

Figure S2. pH and conductivity of catholyte and anolyte of MBES under NO_3 ⁻-N concentration of 14, 28, 42, and 56 mg L⁻¹.

Figure S3. The current density profiles as a function of time under influent chloride concentrations of 0, 142, and 710 mg L^{-1} .

Figure S4. pH and conductivity of catholyte and anolyte of MBES fed with synthetic nitrate-rich waters with chloride concentration of 0, 142, and 710 mg L^{-1} .

Figure S5. The current density profiles under external resistances of 10 Ω and 470 Ω without the presence of chloride ions in catholyte influent.

Figure S6. The current density profiles under external resistances of 10 Ω and 470 Ω with the presence of chloride ions (710 mg L⁻¹) in the catholyte influent.

Figure S7. The catholyte chloride concentration as a function of time under external resistance of 10, 470 Ω and infinite (open circuit condition).

Figure S8 The current density profile when the catholyte influent was real groundwater.

Experimental	Anolyte	Catholyte ^a	External
Conditions	Anolyte		resistance
Impact of nitrate		14 mg L ⁻¹ NO ₃ ⁻ -N	10Ω
concentration		28 mg L ⁻¹ NO ₃ ⁻ -N	10Ω
		42 mg L ⁻¹ NO ₃ ⁻ -N	10Ω
		56 mg L ⁻¹ NO ₃ ⁻ -N	10Ω
Impact of chloride		28 mg L ⁻¹ NO ₃ ⁻ -N	10Ω
concentration		28 mg L ⁻¹ NO ₃ ⁻ -N	10Ω
		142 mg L ⁻¹ Cl ⁻	
	$\lg L^{-1}$ NaAc,	28 mg L ⁻¹ NO ₃ ⁻ -N	10Ω
	10 mL L ⁻¹ stock	710 mg L ⁻¹ Cl ⁻	
Impact of current	solution,	28 mg L ⁻¹ NO ₃ ⁻ -N	10Ω
density (with Cl ⁻)	10 mL L ⁻¹ Phosphate-	710 mg L ⁻¹ Cl ⁻	
	Buffered Saline (PBS),	28 mg L ⁻¹ NO ₃ ⁻ -N	470Ω
	1 mL L ⁻¹ trace solution ^o	710 mg L ⁻¹ Cl ⁻	
		28 mg L ⁻¹ NO ₃ ⁻ -N	Infinite
		710 mg L ⁻¹ Cl ⁻	
Impact of current		28 mg L ⁻¹ NO ₃ ⁻ -N	10Ω
density (without Cl ⁻)		28 mg L ⁻¹ NO ₃ ⁻ -N	470Ω
		28 mg L ⁻¹ NO ₃ ⁻ -N	Infinite
Real groundwater		Groundwater	10Ω

Table S1. Influent compositions for each condition. The recipe of stock, trace andphosphate buffer (PBS) solutions can be found in Burns & Qin, 2023

^a All of the catholyte solutions are added 0.02M of PBS.

^b All of the anolyte solutions are the same which are 1 g L⁻¹ NaAc, 10 mL L⁻¹ stock solution, 10 mL L⁻¹ Phosphate-Buffered Saline (PBS), 1 mL L⁻¹ trace solution

Table S2. Nitrate removal rate, COD removal efficiency, coulombic efficiency and produced charge of the system when catholyte influent NO_3^- -N concentrations were 14, 28, 42, and 56 mg L⁻¹.

c(NO3 ⁻ -N)/mg L ⁻¹	NO3 ⁻ -N removal rate/ mg L ⁻¹ hr ⁻¹	Coulombic efficiency/%	Produced charge/C
14	2.96 ± 0.24	15.8 ± 6.4	572 ± 246
28	4.77 ± 0.14	22.8 ± 7.8	815 ± 282
42	5.40 ± 0.33	5.5 ± 1.4	205 ± 22
56	8.28 ± 0.01	6.6 ± 5.3	230 ± 24

Table S3. Nitrate removal efficiency, nitrate removal rate, COD removal efficiency, and coulombic efficiency of the system when catholyte influent chloride concentrations were 0, 142, and 710 mg L^{-1} .

c(Cl ⁻)/mg L ⁻¹	NO3 ⁻ -N removal efficiency	COD removal efficiency/%	Coulombic efficiency/%
0	100	89.0 ± 3.1	22.8 ± 7.8
142	100	92.4 ± 6.6	26.2 ± 9.2
710	97.84 ± 2.2	89.5 ± 2.4	19.5 ± 4.1

External resistance	NO ₃ ⁻ -N removal efficiency/%	COD removal/%	Coulombic efficiency/%
10Ω (710 Cl ⁻ mg L ⁻¹)	97.8 ± 2.2	89.5 ± 2.4	19.5 ± 4.1
$470\Omega (710 \text{ Cl}^{-} \text{mg } \text{L}^{-1})$	100	96.3 ± 4.9	3.25 ± 2.2
Open circuit (710 Cl ⁻ mg L ⁻¹)	92.4 ± 1.1	94.7 ± 2.1	/
10Ω (without Cl ⁻)	100	89.0 ± 3.1	22.8 ± 7.8
470 Ω (without Cl ⁻)	96.1 ± 4.6	98.3 ± 0.1	1.67 ± 0.01
Open circuit (without Cl ⁻)	95.4 ± 0.1	95.6 ± 0.1	/

Table S4. Nitrate removal efficiency, COD removal rate, and coulombic efficiency of

 the system when external resistance is different

Element	Concentration mg L ⁻¹
Ca ²⁺	96.1
K^+	27.8
Mg^{2+}	33.3
Na ⁺	7.9
Cl	44.2
NO ₃ ⁻ -N	44.5

Table S5. The detailed concentration of major ions in the groundwater sample