Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Efficacy and mechanism of the artificial sweetener saccharin

degradation by thermally activated persulfate in aquatic environments

Webber Wei-Po Lai*, Chia-Ming Chang

Department of Environmental Science and Engineering, Tunghai University, Taichung 407, Taiwan *Corresponding author: Webber Wei-Po Lai [\(wplai@thu.edu.tw\)](mailto:wplai@thu.edu.tw)

Contents

1 Text

6 Tables

2 Figures

Text S1 Description of the chemicals/reagents used in this study.

Saccharin (99%), sodium persulfate (Na₂S₂O₈, 98%), monopotassium phosphate (KH₂PO₄, 98%), dipotassium phosphate (K2HPO4, 99%), sodium hydroxide (NaOH, 97%), sodium chloride (NaCl, 99%), sodium nitrate (NaNO3, 99%), 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 98%) and ethanol (EtOH, 99.8%) were obtained from Sigma–Aldrich (USA). Sulfuric acid (H2SO4, 97%), sodium bicarbonate (NaHCO₃, 99.7%) and phosphoric acid (85%) were purchased from Fluka (Switzerland). *tert*-Butanol (t-BuOH, 99%) was obtained from Alfa Aesar (USA). HPLC-grade methanol (99.9%) was acquired from Duksan Pure Chemicals (Korea). The Suwannee River fulvic acid standard material (1S101F) (99%) was purchased from the International Humic Substance Society (USA). All solutions were prepared by using a Milli-Q water purification system (resistivity of 18.2 MΩ-cm; Merck Millipore, USA). All the solutions utilized in this work were stored in amber glass bottles in a 4 °C refrigerator until further use.

Table S1 Degradation of saccharin in different treatment processes.

Treatment process	Saccharin removal rate		Experimental condition	Reference
Electro-Fenton	Complete removal in less than 30 min	$\qquad \qquad -$	[saccharin] = 0.2 mM (\approx 36.6 mg/L) $[Fe^{2+}] = 0.2$ mM $pH = 3.0$ $I = 200$ mA	(Lin et al., 2016)
Metal organic framework (MOF) material activated peroxymonosulfate MOF material: Bio-MOF-11-Co catalyst	60.7% removal after 120 min	$\overline{}$	[saccharin] = 50 mg/L [MOF material] = $1 g/L$ $[PMS] = 10 g/L$	(Ma et al., 2021a)
UV/persulfate	85.39% removal after 60 min	$\overline{}$	[saccharin] = 0.11 mM (\approx 20 mg/L) [persulfate] = 1.05 mM $pH = 7.0$	(Ma et al., 2021b)
UV/H_2O_2	99.61% removal after 60 min	$\overline{}$ $\overline{}$	[saccharin] = 20 mg/L $[H_2O_2] = 1.05$ mM $pH = 7.0$	(Ye et al., 2022)
Ozonation	>99% removal after 60 min	$\overline{}$ $\overline{}$ $\overline{}$	[saccharin] = 20 mg/L $pH = 7.0$ ozone flow rate = 7.10 mg/min	(Lin et al., 2023)
Thermal/persulfate	Complete removal after 90 min	$\overline{}$ $\qquad \qquad -$	[saccharin] = 5 mg/L [persulfate] = 100 mg/L $pH = 7.0$ temperature = $70 °C$	This study

Lin, H., Wu, J., Oturan, N., Zhang, H. and Oturan, M.A. 2016. Degradation of artificial sweetener saccharin in aqueous medium by electrochemically generated hydroxyl radicals. Environ Sci Pollut R 23(5), 4442-4453.

Lin, Z.Z., Guo, Y., Qu, X.X., Xiang, Y.Y. and Zhu, X. 2023. Oxidative abatement of saccharin by ozone and its influence on DBPs formation during postchlorination. J Water Process Eng 56.

Ma, X.Y., Liu, Z.H., Yang, Y.L., Zhu, L.D., Deng, J., Lu, S.J., Li, X.Y. and Dietrich, A.M. 2021a. Aqueous degradation of artificial sweeteners saccharin and neotame by metal organic framework material. Sci Total Environ 761.

Ma, X.Y., Tang, L.J., Deng, J., Liu, Z.H., Li, X.Y., Wang, P. and Li, Q.S. 2021b. Removal of saccharin by UV/persulfate process: Degradation kinetics, mechanism and DBPs formation. J Photoch Photobio A 420.

	Saccharin transformation byproducts			
Mode	gradient			
Total elution time	11 min			
	A: 1 mM ammonium acetate in DI water			
Mobile phases	B: 1 mM ammonium acetate in LCMS-grade methanol			
Flow rate	1 mL/min			
Injection volume	$20 \mu L$			
	0 min: 90% (A): 10% (B)			
	0.5 min: 95% (A): 5% (B)			
	3 min: 60% (A): 40% (B)			
Gradient	6 min: 40% (A): 60% (B)			
condition	7 min: 0% (A): 100% (B)			
	9 min: 0% (A): 100% (B)			
	9.5 min: 95% (A): 5% (B)			
	11 min: 95% (A): 5% (B)			

Table S2 Conditions of the chromatographic analysis of saccharin transformation byproducts.

Table S3 Conditions of the mass spectrometric analysis of saccharin transformation byproducts.

Mode	ESI negative
Ion source gas 1	50 L/h
Ion source gas 2	50 L/h
Curtain gas	20 L/h
Temperature	500 °C
Ion spray voltage floating	–4500 V
Mass scan range	$50 - 500$ m/z
Declustering potential	$-98V$
collision energy	$-10V$

Contaminant	Initial compound concentration	Persulfate dosage	Operating temperature	Removal rate	Pseudo-first-order rate constant	Reference
carbamazepine	0.04 mM	1 mM	70 °C	100% after 80 min	0.0566 min ⁻¹	(Deng et al., 2013)
naproxen	0.05 mM	1 mM	60 °C	100% after 90 min	0.0269 min ⁻¹	(Ghauch et al., 2015)
triclosan	0.031 mM	0.155 mM	70 °C	100% after 120 min	0.0097 min ⁻¹	(Gao et al., 2016)
valsartan	500 μ g/L	100 mg/L	50 °C	100% after 30 min	0.1453 min ⁻¹	(Arvaniti et al., 2020)
congo red	20 mg/L	1 mM	60 °C		0.0313 min ⁻¹	(Luo et al., 2020)
ofloxacin	0.03 mM	4 mM	70 °C	100% after 80 min	0.0611 min^{-1}	(Li et al., 2022)
dexamethasone	$500 \mu g/L$	100 mg/L	50 °C	98% after 45 min	0.0782 min ⁻¹	(Arvaniti et al., 2022)
acyclovir	$40 \mu M$	2 mM	70 °C	95% after 30 min	0.0326 min ⁻¹	(Ding et al., 2023)
saccharin	5 mg/L	100 mg/L	70 °C	100% after 90 min	0.0230 min ⁻¹	This study

Table S4 Summary of thermal/persulfate treatments applied to different contaminants

- Arvaniti, O.S., Bairamis, F., Konstantinou, I., Mantzavinos, D. and Frontistis, Z. 2020. Degradation of antihypertensive drug valsartan in water matrices by heat and heat/ultrasound activated persulfate: kinetics, synergy effect and transformation products. Chemical Engineering Journal Advances 4, 100062.
- Arvaniti, O.S., Ioannidi, A.A., Politi, A., Miserli, K., Konstantinou, I., Mantzavinos, D. and Frontistis, Z. 2022. Dexamethasone degradation in aqueous medium by a thermally activated persulfate system: Kinetics and transformation products. J Water Process Eng 49.
- Deng, J., Shao, Y.S., Gao, N.Y., Deng, Y., Zhou, S.Q. and Hu, X.H. 2013. Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. Chem Eng J 228, 765-771.
- Ding, C.S., Cai, Z.Y., Hu, C.K., Lei, J., Wang, L., Li, Q.S., Li, X.Y. and Deng, J. 2023. Degradation of antiviral drug acyclovir by thermal activated persulfate process: Kinetics study and modeling. Chemosphere 323.
- Gao, H.P., Chen, J.B., Zhang, Y.L. and Zhou, X.F. 2016. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system. Chem Eng J 306, 522-530.
- Ghauch, A., Tuqan, A. and Kibbi, N. 2015. Naproxen abatement by thermally activated persulfate in aqueous systems. Chem Eng J 279, 861-873.
- Li, T.T., Lu, S., Lin, W.W., Ren, H.J. and Zhou, R. 2022. Heat-activated persulfate oxidative degradation of ofloxacin: Kinetics, mechanisms, and toxicity assessment. Chem Eng J 433.
- Luo, C.W., Wu, D.J., Gan, L., Cheng, X.X., Ma, Q., Tan, F.X., Gao, J., Zhou, W.W., Wang, S.S., Zhang, F.M. and Ma, J. 2020. Oxidation of Congo red by thermally activated persulfate process: Kinetics and transformation pathway. Sep Purif Technol 244.

			Water matrices Solution pH TOC (mg/L) Alkalinity (mM $HCO3-$) NO ₃ ⁻ (mM) Cl ⁻ (mM)		
Groundwater	6.35	6.05	0.82	0.24	1.25
WWTP effluent	737	10.30	L.O9	0.31	0.94
River water	76	11.30	1.82	0.05	1.58

Table S5 Water quality conditions of the sampled water matrices.

Byproducts	Formula	Retention time (min)	Measured m/z $[M-H]$ ⁻	Theoretical m/z $[M-H]$ ⁻	Mass error (Δppm)	Proposed structure
TP1	$C_7H_5NO_4S$	1.86	197.9870	197.9866	-0.1	NH HO `0
TP ₂	$C_7H_5NO_5S$	1.92	213.9820	213.9816	0.4	HO. NH HO

Table S6 Mass spectrometry information obtained for the saccharin byproducts TP1 and TP2.

Figure S1(a) $MS²$ fragmentation spectrum of TP1

Figure S1(b) MS² fragmentation spectrum of TP2

Figure S2 (a) Acute and (b) chronic toxicity of saccharin and the byproducts TP1 and TP2 toward the aquatic organisms fish, daphnids and green algae predicted by ECOSAR.