Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementing Information

Combined oxidation and *in-situ* coagulation in ironactivated sulfite process for tribromophenol removal in actual water matrix

Zongping Wang,^a Guodong Wan,^b Lisan Cao,^a Yujie Cheng,^a Zhenbin Chen^a and Pengchao Xie,*^a

^a School of Environmental Science and Engineering, Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, Wuhan, 430074, China

^b School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

^{*} Corresponding author. E-mail: pengchao_xie@hust.edu.cn (P. Xie)

Captions:

Tex	t S1	Tribromophenol detection method4
Tab	. S1	Water quality parameters5
Tab	. S2	XPS peak area ratios of different elements
Fig.	S1	Batch addition of S(IV) experimental procedure schematic7
Fig.	. S2	Effects of the addition times of S(IV) on the removal of fluorescent organic
	matt	er in lake water (a) and secondary sedimentation tank effluent (b). Conditions:
	[TB	$P_{0} = 10 \ \mu M$, $[Fe(III)]_{0} = 100 \ \mu M$, $[S(IV)]_{Total} = 400 \ \mu M$, initial pH 4.0,
	temp	berature 25 ± 1 °C8
Fig.	. S 3	Effects of S(IV) addition times on fluorescent organic matter removal in lake
	wate	er (a-c) and secondary sedimentation tank effluent (d-f). Conditions: $[TBP]_0 =$
	10 µ	M , [Fe(III)] ₀ = 100 μ M, [S(IV)] _{Total} = 400 μ M, initial pH 4.0, temperature
	$25\pm$	1 °C9
Fig.	. S 4	XPS spectra of O 1s in flocs after treatment by Fe(III) coagulation alone and
	com	bined pre-oxidation and coagulation process of Fe(III)/S(IV) in lake water (a-
	b) aı	nd secondary sedimentation tank effluent (c-d). Conditions: $[TBP]_0 = 10 \ \mu M$,
	[Fe(III)] $_0 = 100 \ \mu\text{M}$, [S(IV)] _{Total} = 400 \ \mu\text{M}, initial pH 4.0, the S(IV) addition times
	was	2, temperature 25 ± 1 °C
Fig.	S5	FTIR spectra of flocs derived from Fe(III) coagulation alone and combined
	pre-	oxidation and coagulation of Fe(III)/S(IV) in lake water (a) and secondary
	sedi	mentation tank effluent (b). Conditions: $[TBP]_0 = 10 \ \mu M$, $[Fe(III)]_0 = 100 \ \mu M$,
	[S(Γ	V)] _{Total} = 400 μ M, initial pH 4.0, the S(IV) addition times was 2, temperature
	25±	1 °C10
Fig.	S6	Effects of initial Fe(III) dosage on the removal of fluorescent organic matter
	in la	ke water (a) and secondary sedimentation tank effluent (b). Conditions: [TBP]0
	= 10) μ M, [S(IV)] _{Total} = 400 μ M, initial pH 4.0, the S(IV) addition times was 2,
	temp	perature 25 ± 1 °C
Fig.	. S 7	Effects of Fe(III) concentration on zeta potential values in lake water (a) and
	seco	ndary sedimentation tank effluent (b). Conditions: $[TBP]_0 = 10 \ \mu M$, $[S(IV)]_{Total}$
	= 40	00 μ M, initial pH 4.0, the S(IV) addition times was 2, temperature 25 ± 1 °C.

Fig. S9 Effects of initial pH on the removal of turbidity, DOC, TBP, UV₂₅₄ and fluorescent organic matter in lake water (a-b), and secondary sedimentation tank effluent (c-d). Conditions: $[TBP]_0 = 10 \ \mu\text{M}$, $[Fe(III)]_0 = 100 \ \mu\text{M}$, $[S(IV)]_{Total} = 400 \ \mu\text{M}$, initial pH 4.0, the S(IV) addition times was 2, temperature 25 ± 1 °C......15

Test S1 Tribromophenol detection method

The tribromophenol was achieved using liquid chromatography (LC) with an Agilent HC-C18 column (5 μ m, 250 mm × 4.6 mm) operated at a column temperature of 25 °C, with a detection wavelength set at 290 nm and an injection volume of 50 μ L. The mobile phase, comprising methanol, ultrapure water, and glacial acetic acid in a volume ratio of 85:15:1, respectively, facilitated precise separation and detection of tribromophenol compounds.

		1 71					
parameter	unit	lake water	secondary sedimentation tank effluent				
turbidity	NTU	19.8	2.22				
pH	—	8.02	7.53				
UV ₂₅₄	cm^{-1}	0.078	0.089				
DOC	mg/L	9.45	7.95				

Tab. S1Water quality parameters

Туре	Characteristic peaks	Lake water (eV)		Ratio/%		Secondary sedimentation tank effluent (eV)		Ratio/%	
		Fe(III)/ Na2SO3	Fe(III)	Fe(III)/ Na ₂ SO ₃	Fe(III)	Fe(III)/ Na2SO3	Fe(III)	Fe(III)/ Na ₂ SO ₃	Fe(III)
	Fe(II)	710.6	710.6	29.32	21.90	710.7	710.6	27.12	19.50
Fe		724.0	724.0	12.85	9.52	724.1	723.9	11.86	8.50
2p	Fe(III)	712.0	712.0	40.16	47.62	712.1	712.0	42.37	50.00
		725.7	725.7	17.67	20.95	725.6	725.6	18.64	22.00
	Fe–O	530.0	530.0	12.16	9.42	530.2	530.0	21.62	12.14
O_{1a}	Fe–OH	531.2	531.2	39.22	18.83	531.1	530.9	30.03	21.84
O 1s	C=O	532.0	532.0	27.84	44.84	531.9	531.9	21.02	48.54
	C–O	532.9	532.9	20.78	26.91	533.0	533.2	27.33	17.48

 Tab. S2
 XPS peak area ratios of different elements

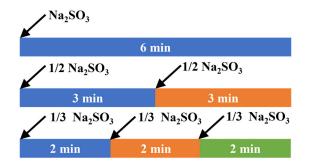
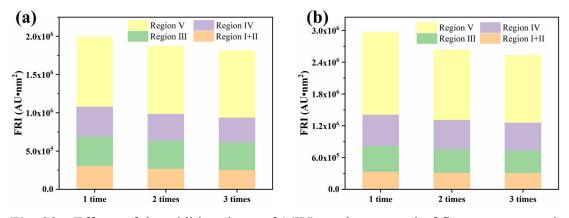
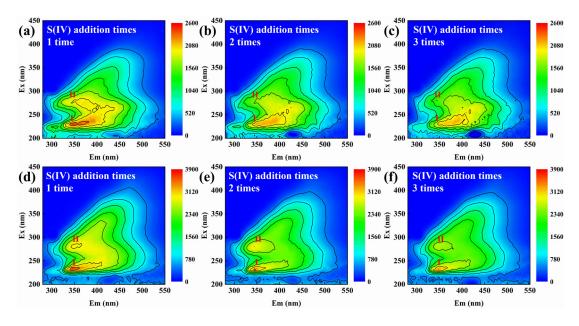




Fig. S1 Batch addition of S(IV) experimental procedure schematic

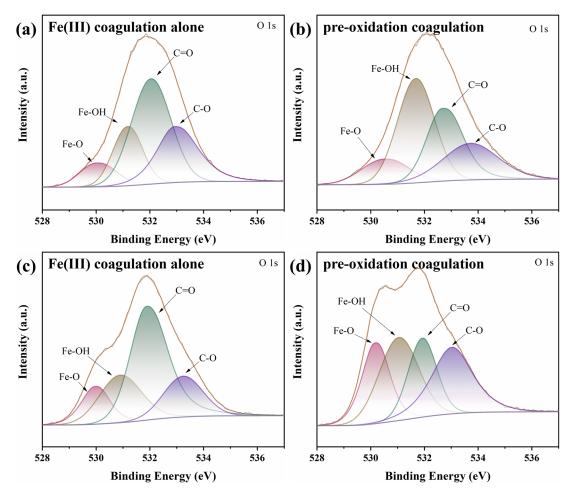
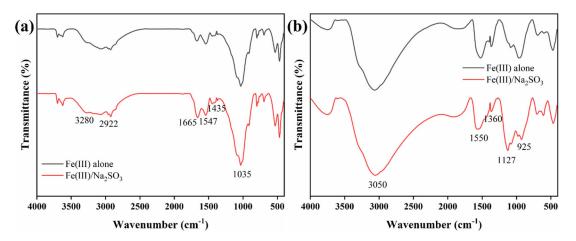
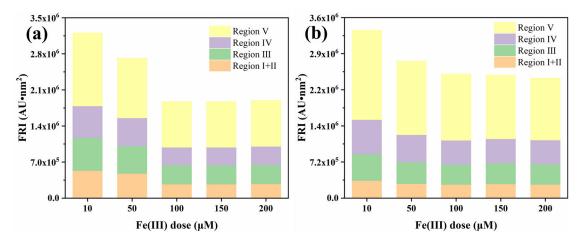

Fig. S2 Effects of the addition times of S(IV) on the removal of fluorescent organic matter in lake water (a) and secondary sedimentation tank effluent (b). Conditions: $[TBP]_0 = 10 \ \mu M$, $[Fe(III)]_0 = 100 \ \mu M$, $[S(IV)]_{Total} = 400 \ \mu M$, initial pH 4.0, temperature 25 ± 1 °C.

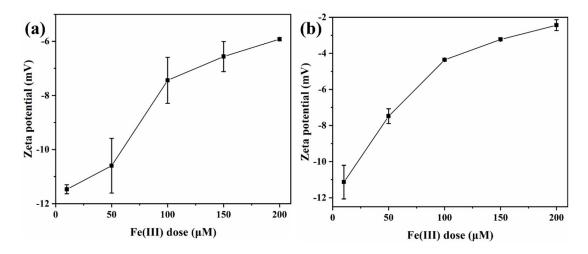
Fig. S3 Effects of S(IV) addition times on fluorescent organic matter removal in lake water (a-c) and secondary sedimentation tank effluent (d-f). Conditions: $[TBP]_0 =$

10 μ M, [Fe(III)]₀ = 100 μ M, [S(IV)]_{Total} = 400 μ M, initial pH 4.0, temperature

 25 ± 1 °C.

Fig. S4 XPS spectra of O 1s in flocs after treatment by Fe(III) coagulation alone and combined pre-oxidation and coagulation process of Fe(III)/S(IV) in lake water (a-b) and secondary sedimentation tank effluent (c-d). Conditions: $[TBP]_0 = 10 \ \mu M$, $[Fe(III)]_0 = 100 \ \mu M$, $[S(IV)]_{Total} = 400 \ \mu M$, initial pH 4.0, the S(IV) addition times was 2, temperature 25 ± 1 °C.


Fig. S5 FTIR spectra of flocs derived from Fe(III) coagulation alone and combined pre-oxidation and coagulation of Fe(III)/S(IV) in lake water (a) and secondary sedimentation tank effluent (b). Conditions: [TBP]₀ = 10 μM, [Fe(III)]₀ = 100 μM, [S(IV)]_{Total} = 400 μM, initial pH 4.0, the S(IV) addition times was 2, temperature

 25 ± 1 °C.

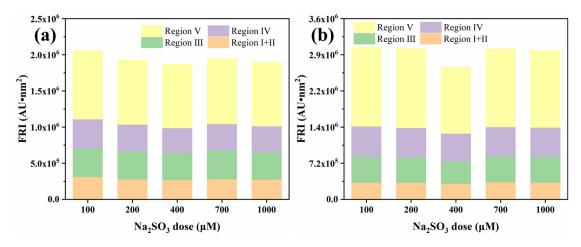


Fig. S6 Effects of initial Fe(III) dosage on the removal of fluorescent organic matter in lake water (a) and secondary sedimentation tank effluent (b). Conditions: $[TBP]_0 =$ $10 \ \mu$ M, $[S(IV)]_{Total} = 400 \ \mu$ M, initial pH 4.0, the S(IV) addition times was 2,

temperature 25 ± 1 °C.

Fig. S7 Effects of Fe(III) concentration on zeta potential values in lake water (a) and secondary sedimentation tank effluent (b). Conditions: $[TBP]_0 = 10 \ \mu M$, $[S(IV)]_{Total} = 400 \ \mu M$, initial pH 4.0, the S(IV) addition times was 2, temperature 25 ± 1 °C.

Fig. S8 Effects of initial S(IV) dosage on the removal of fluorescent organic matter in lake water (a) and secondary sedimentation tank effluent (b). Conditions: $[TBP]_0 =$ $10 \ \mu$ M, $[Fe(III)]_0 = 100 \ \mu$ M, initial pH 4.0, the S(IV) addition times was 2,

temperature 25 ± 1 °C.

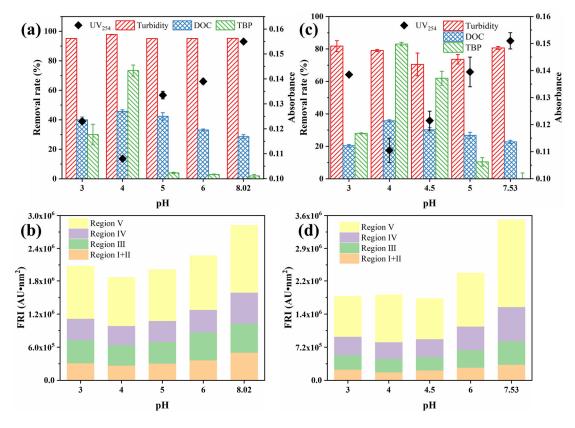


Fig. S9 Effects of initial pH on the removal of turbidity, DOC, TBP, UV₂₅₄ and fluorescent organic matter in lake water (a-b) and secondary sedimentation tank effluent (c-d). Conditions: $[TBP]_0 = 10 \ \mu\text{M}$, $[Fe(III)]_0 = 100 \ \mu\text{M}$, $[S(IV)]_{Total} = 400 \ \mu\text{M}$, initial pH 4.0, the S(IV) addition times was 2, temperature 25 ± 1 °C.