Formation of chlorinated disinfection by-products and fate of their

precursors in individual processes of a conventional water treatment plant

assessed by a high-resolution mass spectrometry

Vitharuch Yuthawong*a, Chatyapha Thongnueahaa and Phanwatt Phungsaib,c

 ^a Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
 ^b Department of Environmental Engineering, Faculty of Engineering and Khon Kaen University, Khon Kaen 40002, Thailand

^c Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand

*Corresponding Author: Tel.: +660-2797-0999 ex 1009; e-mail address: vitharuch.y@ku.th

Contents in this Supporting Information. 1. Figures 2. Tables

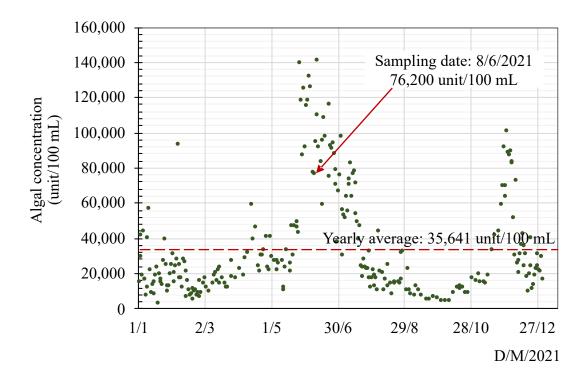
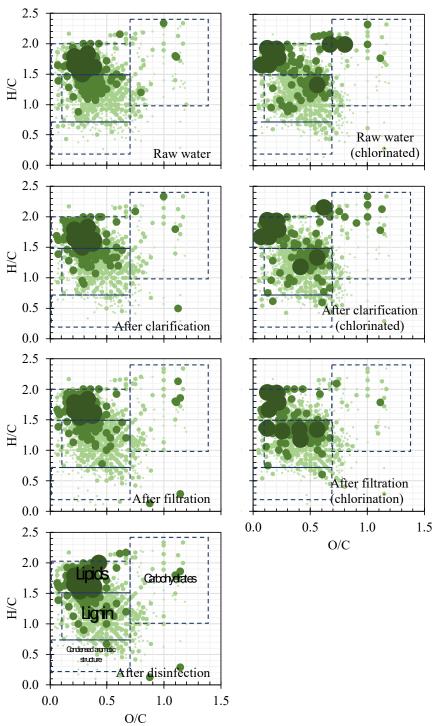



Figure S1 Algal concentrations in raw water of Bangkhen Water Treatment Plant in 2021

• Top 10 • 11-100 • 101-500 · >501

Figure S2 van Krevelen diagram of CHO components in BK-WTP (left) before chlorination, and (right) after chlorination

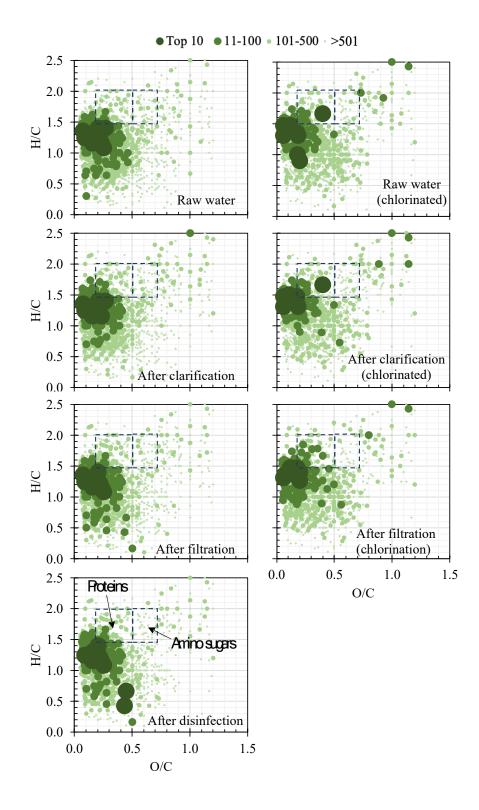


Figure S3 van Krevelen diagram of CHON components in BK-WTP (left) before chlorination, and (right) after chlorination

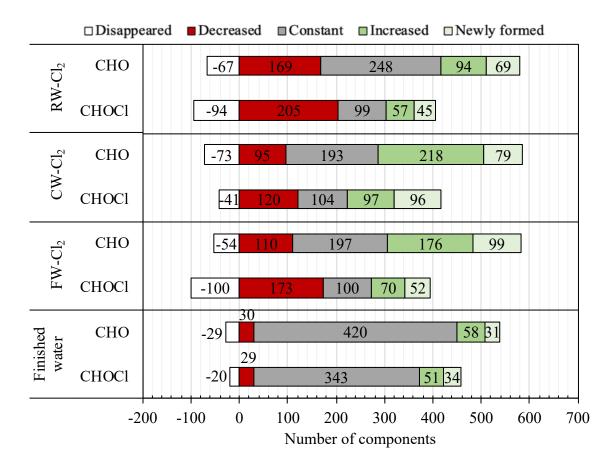


Figure S4 Changes of CHO and CHOCl components during water treatment processes

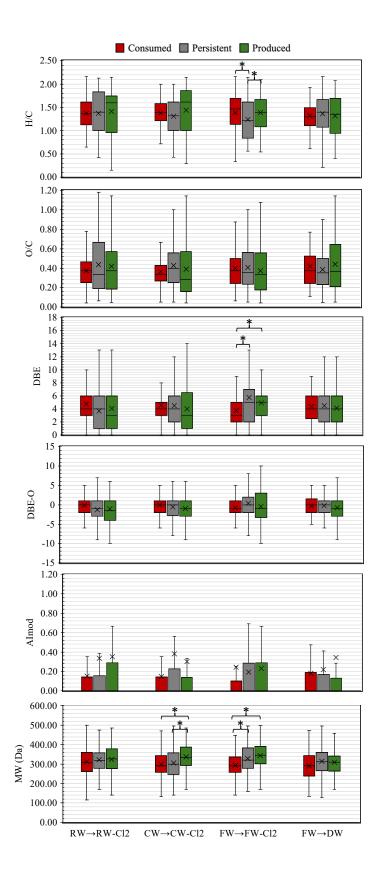


Figure S5 Molecular characteristics of CHOCl components classified into consumed,

persistent, and produced after chlorination

(Asterix * indicates significant difference (p-value<0.05)

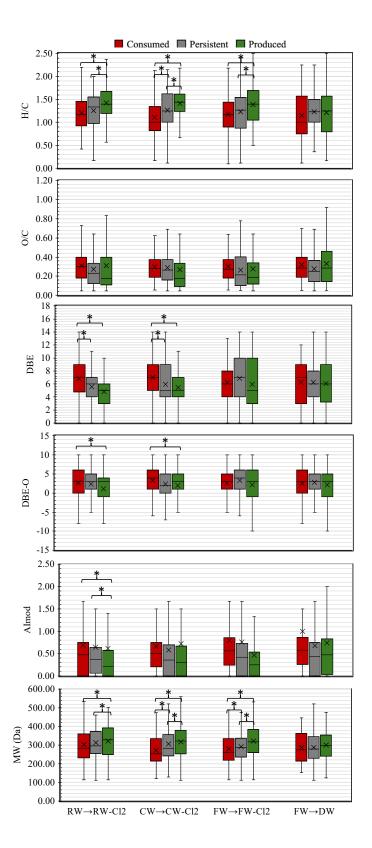


Figure S6 Molecular characteristics of CHONCl components classified into consumed,

persistent, and produced after chlorination

(Asterix * indicates significant difference (p-value<0.05)

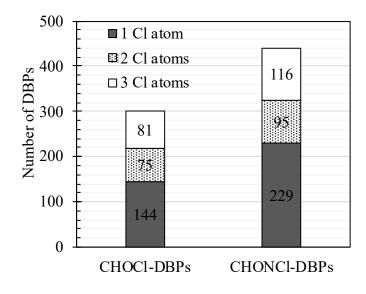


Figure S7 Number of chlorine atoms in DBPs observed in this study



Figure S8 Venn diagram of CHOC1-DBP components detected in chlorinated samples and

finished water

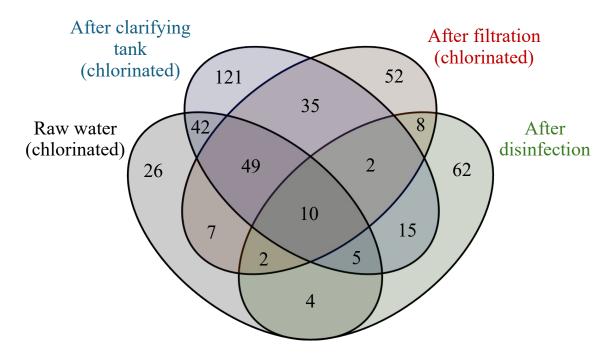


Figure S9 Venn diagram of CHONCI-DBP components detected in chlorinated samples and

finished water

Molecular characteristics	CHO and CHOCl	CHON and CHONCl	Welch's t-test at 5% significant level
Number	1033	1340	-
H/C	1.28	1.16	< 0.05
O/C	0.44	0.37	0.21
DBE	5.67	7.32	< 0.05
DBE-O	-0.12	2.55	< 0.05
AI_{mod}	0.29	0.52	< 0.05
MW	303.10	313.01	0.08

Table S1 Molecular characteristics of CHO, CHOCl, CHON, and CHONCl components in

raw water sample

	R	W	C	CW	F	W	Finished water	
	СНО	CHON	СНО	CHON	СНО	CHON	СНО	CHON
	and	and						
	CHOCI	CHONCI	CHOCI	CHONCI	CHOCl	CHONCI	CHOCl	CHONCI
Number of components	1033	1340	941	1012	980	1223	996	1249
Total Abs.								
intensity	1.19	2.47	0.49	0.87	0.61	1.22	0.60	1.18
(×10 ¹⁰)								
H/C	1.28	1.16	1.28	1.16	1.27	1.13	1.28	1.13
O/C	0.44	0.37	0.44	0.35	0.44	0.36	0.44	0.37
DBE	5.67	7.32	5.68	7.14	5.60	7.19	5.53	7.19
DBE-O	-0.12	2.55	-0.12	2.77	-0.07	2.76	-0.15	2.65
AI _{mod}	0.29	0.52	0.23	0.53	0.23	0.55	0.24	0.54
MW	303.10	313.01	297.79	302.02	297.57	301.65	298.60	302.43

Table S2 Number of components, total absolute intensity, and number-average molecular characteristics of CHO/CHOCl and CHON/CHONCl during water treatment processes

Samplag	DOC conc.	. (mg L ⁻¹)	SUVA (L mg ⁻¹ m ⁻¹)		
Samples –	Before Cl ₂	After Cl ₂	Before Cl ₂	After Cl ₂	
RW	6.3	5.2	1.47	0.91	
CW	3.5	3.4	1.99	0.74	
FW	3.5	3.6	1.36	0.56	
Finished water	3.8	-	1.52	-	

Table S3 Dissolved organic carbon (DOC) concentrations and specific UV absorbance(SUVA) of the samples before and after chlorination

Table S4 CHO-DBPs detected in chlorinated samples and finished water in this study. RW-Cl₂, CW-Cl₂, and FW-Cl₂ denote chlorinated raw water, chlorinated clarified water, and chlorinated filtered water, respectively.

	Theo.		nce(s) of D	BPs in this	s study	Λ is a reported in reference(s)
DBP formula	MW (Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	Also reported in reference(s)
C ₁₃ H ₁₅ OCl	222.0811	\checkmark	~	~	√	
C ₁₂ H ₁₇ O ₆ Cl	292.0714	\checkmark	\checkmark	\checkmark	\checkmark	Lavonen et al. (2013), Zhang et al. (2014)
$C_9H_{16}O_7Cl_2$	306.0273	\checkmark	\checkmark	\checkmark	\checkmark	
C ₁₈ H ₁₁ O ₃ Cl	310.0397	\checkmark	\checkmark	\checkmark	\checkmark	
C ₁₇ H ₂₃ O ₃ Cl	310.1336	\checkmark	\checkmark	\checkmark	\checkmark	
C ₁₅ H ₂₃ O ₅ Cl	318.1234	\checkmark	\checkmark	\checkmark	\checkmark	Lavonen et al. (2013), Zhang et al. (2014)
C ₁₁ H ₁₉ O ₉ Cl	330.0718	\checkmark	\checkmark	\checkmark	\checkmark	
C14H23O7Cl	338.1132	\checkmark	\checkmark	\checkmark	\checkmark	Lavonen et al. (2013)
$C_{21}H_{40}O_2Cl_2$	394.2405	\checkmark	\checkmark	\checkmark	\checkmark	
C ₈ H ₇ O ₂ Cl	170.0135		\checkmark	\checkmark	\checkmark	
$C_6H_8O_2Cl_2$	181.9901	\checkmark	\checkmark		\checkmark	
$C_7H_{12}OCl_2$	182.0265	\checkmark	\checkmark	\checkmark		
C ₁₃ H ₂₁ OCl	228.1281	\checkmark	~	\checkmark		
$C_7H_{14}O_4Cl_2$	232.0269	\checkmark	~	\checkmark		
C ₁₂ H ₉ O ₃ Cl	236.0240	\checkmark	~	~		
C ₁₂ H ₁₁ O ₄ Cl	254.0346	\checkmark	~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₆ H ₃ O ₅ Cl ₃	259.9046	\checkmark	~		√	
C ₁₀ H ₁₉ OCl ₃	260.0501	\checkmark	~		√	
C ₁₁ H ₂₁ O ₅ Cl	268.1078	\checkmark	~	~		
C ₁₁ H ₂₁ OCl ₃	274.0658	\checkmark	~		√	
C ₁₄ H ₁₃ O ₄ Cl	280.0502		~	~	√	Lavonen et al. (2013), Zhang et al. (2014)
C ₁₁ H ₁₉ O ₆ Cl	282.0870	\checkmark	~	~		
$C_{10}H_8O_6Cl_2$	293.9698	\checkmark	~		√	Lavonen et al. (2013), Zhang et al. (2014)
C ₁₂ H ₁₁ O ₇ Cl	302.0193		√	~	√	Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₂ H ₁₇ O ₇ Cl	308.0663	\checkmark	~	\checkmark		Lavonen et al. (2013)
C ₁₄ H ₁₁ O ₆ Cl	310.0244	\checkmark	~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₃ H ₂₁ O ₂ Cl ₃	314.0607	~	~		√	
C ₁₇ H ₁₉ O ₄ Cl	322.0972	\checkmark	~	\checkmark		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₆ H ₃₁ O ₄ Cl	322.1911	\checkmark	~	~		
C ₈ H ₅ O ₈ Cl ₃	333.9050	\checkmark	~		\checkmark	
C ₁₄ H ₂₁ O ₇ Cl	336.0976	\checkmark		\checkmark	\checkmark	Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₅ H ₂₅ O ₂ Cl ₃	342.0920	\checkmark	~	~		
C ₁₈ H ₁₅ O ₅ Cl	346.0608	\checkmark	~	~		
C ₁₅ H ₂₃ O ₇ Cl	350.1132	\checkmark	~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₆ H ₂₇ O ₆ Cl	350.1496	\checkmark	~	~		Lavonen et al. (2013)

DBP formula	Theo. MW	Preser	nce(s) of D	BPs in this	s study	- Also reported in reference(s)
DBI Ioiiiiula	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	Also reported in reference(s)
C14H23O8Cl	354.1081	\checkmark	~	~		
C ₁₇ H ₂₅ O ₆ Cl	360.1340	\checkmark	~	~		Lavonen et al. (2013), Zhang et al. (2014), Phungsai et al. (2018)
C ₁₈ H ₃₁ O ₅ Cl	362.1860	\checkmark	~	~		
C ₁₇ H ₁₃ O ₇ Cl	364.0350	\checkmark	~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₈ H ₁₇ O ₆ Cl	364.0714	\checkmark	~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₅ H ₂₃ O ₈ Cl	366.1081	\checkmark	~	~		Lavonen et al. (2013)
C ₁₇ H ₃₃ O ₂ Cl ₃	374.1546	\checkmark	√	~		
C ₁₆ H ₂₃ O ₈ Cl	378.1081	\checkmark	~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₄ H ₂₆ O ₈ Cl ₂	392.1005	\checkmark	√	~		
C ₁₆ H ₃₁ O ₄ Cl ₃	392.1288	\checkmark	~	~		
C ₁₄ H ₂₉ O ₁₀ Cl	392.1449		~	~	~	
C ₁₈ H ₂₉ O ₇ Cl	392.1602	\checkmark	~	~		Lavonen et al. (2013)
C17H27O8Cl	394.1394	\checkmark	~	~		Lavonen et al. (2013)
C ₁₈ H ₂₉ O ₃ Cl ₃	398.1182	\checkmark	~	~		
$C_{22}H_{21}OCl_3$	406.0658	\checkmark	~	~		
C ₁₄ H ₂₇ O ₁₁ Cl	406.1242		~	~	~	
C ₁₇ H ₃₃ O ₄ Cl ₃	406.1444		~	~	~	
$C_{13}H_{22}O_{10}Cl_2$	408.0590	\checkmark	~	~		
$C_{24}H_{24}O_2Cl_2$	414.1153	\checkmark	~	~		
C ₁₈ H ₃₃ O ₄ Cl ₃	418.1444	\checkmark	~		~	
C ₁₄ H ₂₅ O ₁₂ Cl	420.1035	\checkmark	~	~		
C ₁₃ H ₁₇ O ₁₄ Cl	432.0307	\checkmark	~	~		
$C_{16}H_{30}O_9Cl_2$	436.1267	\checkmark	~	~		
C ₂₆ H ₂₅ O ₄ Cl	436.1441	\checkmark	~	~		
C ₂₂ H ₃₇ O ₅ Cl ₃	486.1707	\checkmark	~	~		
$C_5H_8O_2Cl_2$	169.9901	\checkmark			~	
C ₉ H ₅ O ₄ Cl	211.9876		~		~	
C ₁₃ H ₇ OCl	214.0185		\checkmark	~		
$C_9H_{12}O_2Cl_2$	222.0214	\checkmark	~			
C ₁₂ H ₁₂ OCl ₂	242.0265			~	~	
C7H15O7Cl	246.0506	\checkmark	~			
C7H5O8Cl	251.9673			~	~	
C ₁₆ H ₁₅ OCl	258.0811		~		~	
C ₉ H ₅ O ₇ Cl	259.9724	\checkmark	~			Zhang et al. (2014)
C ₁₄ H ₁₃ O ₃ Cl	264.0553		~	~		
C ₁₆ H ₂₇ OCl	270.1750		~		~	
C ₁₁ H ₁₉ OCl ₃	272.0501	\checkmark	~			
$C_{11}H_8O_4Cl_2$	273.9800			~	~	Lavonen et al. (2013), Zhang et al. (2014)

DBP formula	Theo. MW	Preser	nce(s) of D	BPs in this	s study	- Also reported in reference(s)
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	
C ₁₄ H ₂₇ O ₃ Cl	278.1649	\checkmark	~			
C ₁₃ H ₉ O ₅ Cl	280.0139	\checkmark	~			Lavonen et al. (2013), Zhang et al. (2014)
C ₇ H ₂ O ₈ Cl ₂	283.9127	\checkmark	~			
C ₁₂ H ₉ O ₆ Cl	284.0088	\checkmark	~			Lavonen et al. (2013), Andersson et al. (2021)
C ₈ H ₅ O ₅ Cl ₃	285.9203	\checkmark	~			
C ₁₁ H ₁₁ O ₇ Cl	290.0193		~	~		Lavonen et al. (2013), Zhang et al. (2014), Phungsai et al. (2018)
C ₁₇ H ₂₃ O ₂ Cl	294.1387			~	~	
C ₁₃ H ₁₁ O ₆ Cl	298.0244	\checkmark	~			Lavonen et al. (2013), Andersson et al. (2021)
C ₁₃ H ₂₁ OCl ₃	298.0658	\checkmark	~			
C ₁₂ H ₁₃ O ₇ Cl	304.0350		~	~		Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
$C_{10}H_8O_7Cl_2$	309.9647		~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₀ H ₁₉ O ₉ Cl	318.0718	\checkmark	~			
C ₁₁ H ₂₃ O ₈ Cl	318.1081		~	~		
C ₁₂ H ₁₅ O ₈ Cl	322.0455		~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₂ H ₁₇ O ₈ Cl	324.0612	\checkmark	~			Lavonen et al. (2013)
C ₁₅ H ₂₅ OCl ₃	326.0971	\checkmark	~			
C ₁₆ H ₂₁ O ₅ Cl	328.1078			~	~	Lavonen et al. (2013)
C ₁₅ H ₂₇ OCl ₃	328.1127	\checkmark	\checkmark			
$C_9H_8O_9Cl_2$	329.9545	\checkmark	\checkmark			
C ₁₂ H ₉ O ₉ Cl	331.9935		\checkmark		\checkmark	Lavonen et al. (2013), Zhang et al. (2014)
$C_{14}H_{27}O_2Cl_3$	332.1077		\checkmark		\checkmark	
C ₁₂ H ₂₅ O ₈ Cl	332.1238		~	\checkmark		
C ₁₀ H ₁₉ O ₁₀ Cl	334.0667		~		\checkmark	
$C_{15}H_{20}O_4Cl_2$	334.0739			~	~	
$C_{17}H_{34}O_2Cl_2$	340.1936	\checkmark	~			
C ₁₄ H ₂₃ O ₃ Cl ₃	344.0713		~		~	
C ₁₂ H ₂₅ O ₉ Cl	348.1187	\checkmark	~			
$C_{13}H_{14}O_7Cl_2$	352.0117		~	~		Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₁ H ₂₂ O ₈ Cl ₂	352.0692		\checkmark	~		
C ₁₆ H ₃₁ O ₂ Cl ₃	360.1390	\checkmark	~			
C ₁₅ H ₁₉ O ₈ Cl	362.0768		\checkmark	\checkmark		Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₅ H ₂₉ O ₃ Cl ₃	362.1182		\checkmark	~		
C ₁₄ H ₁₉ O ₉ Cl	366.0718		\checkmark	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₇ H ₁₇ O ₇ Cl	368.0663		\checkmark	\checkmark		Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C16H29O7Cl	368.1602	\checkmark	~			
C ₁₄ H ₁₇ O ₅ Cl ₃	370.0142			~	~	
C ₁₆ H ₂₉ O ₃ Cl ₃	374.1182	\checkmark	\checkmark			

DBP formula	Theo. MW	Preser	nce(s) of D	BPs in this	s study	Also reported in reference(s)
DBP Ionnula	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	Also reported in reference(s)
C ₁₅ H ₂₇ O ₄ Cl ₃	376.0975		~		\checkmark	
C ₁₆ H ₃₁ O ₃ Cl ₃	376.1339		~		\checkmark	
C ₁₇ H ₂₇ O ₇ Cl	378.1445	\checkmark		~		Lavonen et al. (2013)
C ₁₉ H ₂₅ O ₆ Cl	384.1340	\checkmark		~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₇ H ₃₃ O ₃ Cl ₃	390.1495		~		\checkmark	
$\mathrm{C}_{17}\mathrm{H}_{20}\mathrm{O}_{7}\mathrm{Cl}_{2}$	406.0586		~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₅ H ₃₁ O ₁₀ Cl	406.1606		~	~		
C ₁₈ H ₂₉ O ₈ Cl	408.1551	\checkmark	~			Lavonen et al. (2013)
$C_{12}H_{20}O_{11}Cl_2$	410.0383	\checkmark			√	
C ₁₉ H ₃₅ O ₃ Cl ₃	416.1652		~	~		
C ₂₃ H ₂₃ OCl ₃	420.0814		~	~		
C ₁₈ H ₃₅ O ₄ Cl ₃	420.1601		~		√	
$C_{16}H_{16}O_9Cl_2$	422.0171		~	~		Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₉ H ₃₃ O ₄ Cl ₃	430.1444	\checkmark	~			
C ₁₃ H ₁₉ O ₁₄ Cl	434.0463		~		√	
C ₁₈ H ₂₃ O ₁₀ Cl	434.0980		~	~		Lavonen et al. (2013), Zhang et al. (2014)
C ₂₆ H ₂₆ O ₃ Cl ₂	456.1259	\checkmark	~			
$C_{24}H_{24}O_5Cl_2$	462.1001			~	√	
$C_{26}H_{26}O_4Cl_2$	472.1208		~	~		
C ₂₁ H ₃₅ O ₅ Cl ₃	472.1550	\checkmark		~		
C ₂₂ H ₃₅ O ₅ Cl ₃	484.1550		~	~		
$C_{21}H_{33}O_6Cl_3$	486.1343	\checkmark		~		
$C_{21}H_{29}O_7Cl_3$	498.0979			~	√	
$C_2H_2O_2Cl_2$	127.9432		~			
C ₄ H ₆ OCl ₂	139.9796	\checkmark				
C ₅ H ₈ OCl ₂	153.9952	\checkmark				
C ₈ H ₉ O ₂ Cl	172.0291			~		
C ₇ H ₇ O ₃ Cl	174.0084				\checkmark	
C5H6O3Cl2	183.9694				√	
$C_6H_{10}O_2Cl_2$	184.0058	\checkmark				
C7H3O4Cl	185.9720				√	
C ₁₁ H ₉ OCl	192.0342	\checkmark				
C ₁₁ H ₁₃ OCl	196.0655	\checkmark				
C ₁₁ H ₉ O ₂ Cl	208.0291	\checkmark				
C ₉ H ₇ O ₄ Cl	214.0033	\checkmark				Gonsior et al. (2014)
C7H3O2Cl3	223.9199		~			
C ₈ H ₉ OCl ₃	225.9719				√	
C14H9OCl	228.0342		~			

DBP formula	Theo. MW	Preser	nce(s) of D	BPs in this	s study	Also reported in reference(s)
DBP formula	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	Also reported in reference(s)
C ₈ H ₅ O ₆ Cl	231.9775				\checkmark	
C ₁₀ H ₁₅ O ₄ Cl	234.0659				\checkmark	
$C_8H_8O_4Cl_2$	237.9800				\checkmark	
C ₁₄ H ₁₉ OCl	238.1124			~		
$C_7H_{10}O_5Cl_2$	243.9905				\checkmark	
C ₉ H ₉ O ₆ Cl	248.0088				\checkmark	Lavonen et al. (2013), Zhang et al. (2014)
C ₁₀ H ₁₃ O ₅ Cl	248.0452	\checkmark				Zhang et al. (2014)
C ₁₁ H ₁₇ O ₄ Cl	248.0815				√	
C ₈ H ₆ O ₅ Cl ₂	251.9592				\checkmark	
C ₁₅ H ₂₁ OCl	252.1281			~		
C ₁₃ H ₁₆ OCl ₂	258.0578			~		
$C_{10}H_6O_4Cl_2$	259.9643		~			Zhang et al. (2014)
C ₁₀ H ₉ O ₆ Cl	260.0088		~			Lavonen et al. (2013), Zhang et al. (2014)
C ₇ H ₁₃ O ₈ Cl	260.0299	\checkmark				
C ₁₄ H ₂₅ O ₂ Cl	260.1543		~			
C ₁₃ H ₂₂ OCl ₂	264.1048		~			
$C_9H_8O_5Cl_2$	265.9749				√	Zhang et al. (2014)
C ₈ H ₆ O ₆ Cl ₂	267.9541				~	Lavonen et al. (2013), Zhang et al. (2014)
C ₈ H ₉ O ₈ Cl	267.9986				~	
C ₁₄ H ₂₁ O ₃ Cl	272.1179				√	
C10H9O7Cl	276.0037			\checkmark		Lavonen et al. (2013), Zhang et al. (2014), Phungsai et al. (2018)
$C_{10}H_{19}O_2Cl_3$	276.0451				\checkmark	
C ₁₅ H ₁₃ O ₃ Cl	276.0553		~			
C ₁₂ H ₁₇ O ₅ Cl	276.0765			~		Lavonen et al. (2013), Zhang et al. (2014)
$C_{13}H_{21}O_4Cl$	276.1128			\checkmark		Lavonen et al. (2013)
C ₁₀ H ₁₁ O ₇ Cl	278.0193				√	Lavonen et al. (2013), Phungsai et al. (2018)
C ₁₇ H ₂₃ OCl	278.1437			~		
C ₁₄ H ₂₆ OCl ₂	280.1361		~			
$C_{17}H_{11}O_2Cl$	282.0448				√	
C ₁₁ H ₅ O ₇ Cl	283.9724	\checkmark				
$C_{11}H_{15}O_2Cl_3$	284.0138				\checkmark	
$C_{12}H_{22}O_{3}Cl_{2}$	284.0946		~			
C ₁₂ H ₁₁ O ₆ Cl	286.0244		~			Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₀ H ₁₅ O ₃ Cl ₃	288.0087				√	
C ₈ H ₁₃ O ₉ Cl	288.0248	\checkmark				
C ₁₁ H ₁₉ O ₂ Cl ₃	288.0451		√			
C ₁₃ H ₁₇ O ₅ Cl	288.0765				~	Lavonen et al. (2013), Zhang et al. (2014)
C ₇ H ₅ O ₆ Cl ₃	289.9152		~			

DBP formula	Theo. MW	Preser	nce(s) of D	BPs in this	s study	Also reported in reference(s)
DBP Iorniula	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	
$C_{11}H_{21}O_2Cl_3$	290.0607		~			
C ₁₅ H ₂₇ O ₃ Cl	290.1649		~			
C ₈ H ₁₇ O ₉ Cl	292.0561		~			
C ₁₆ H ₁₇ O ₃ Cl	292.0866		~			
$C_{12}H_{13}O_2Cl_3$	293.9981			√		
C ₁₀ H ₁₁ O ₈ Cl	294.0142		~			Zhang et al. (2014)
C ₁₅ H ₂₈ OCl ₂	294.1517		~			
C ₁₃ H ₉ O ₆ Cl	296.0088		~			Lavonen et al. (2013), Zhang et al. (2014)
C ₈ H ₄ O ₈ Cl ₂	297.9283		~			
C ₁₀ H ₁₂ O ₆ Cl ₂	298.0011				~	Lavonen et al. (2013), Zhang et al. (2014)
$C_{15}H_{20}O_2Cl_2$	302.0840			~		
C ₁₈ H ₁₉ O ₂ Cl	302.1074			~		
C ₁₆ H ₂₄ OCl ₂	302.1204			~		
C ₁₁ H ₂₂ O ₅ Cl ₂	304.0844				√	
C ₁₄ H ₂₁ O ₅ Cl	304.1078		~			Lavonen et al. (2013), Zhang et al. (2014)
$C_{11}H_8O_6Cl_2$	305.9698		~			Lavonen et al. (2013), Zhang et al. (2014)
C ₁₁ H ₁₁ O ₈ Cl	306.0142		~			Lavonen et al. (2013), Zhang et al. (2014)
C ₁₆ H ₂₈ OCl ₂	306.1517		~			
C ₁₉ H ₂₉ OCl	308.1907			√		
C ₁₄ H ₂₁ OCl ₃	310.0658		~			
$C_{12}H_2O_6Cl_2$	311.9228			√		
C ₁₃ H ₂₂ O ₄ Cl ₂	312.0895				√	
C ₁₆ H ₂₁ O ₄ Cl	312.1128			√		Lavonen et al. (2013), Zhang et al. (2014)
C ₁₇ H ₂₅ O ₃ Cl	312.1492			√		
C ₁₂ H ₂₃ O ₇ Cl	314.1132		~			
C ₁₃ H ₁₃ O ₇ Cl	316.0350		~			Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₈ H ₁₄ OCl ₂	316.0422		~			
C ₁₃ H ₂₃ O ₂ Cl ₃	316.0764		~			
C ₁₄ H ₂₇ OCl ₃	316.1127		~			
C ₁₂ H ₂₅ O ₇ Cl	316.1289			√		
C ₉ H ₁₅ O ₁₀ Cl	318.0354				√	
C ₁₃ H ₁₅ O ₇ Cl	318.0506		~			Lavonen et al. (2013), Zhang et al. (2014), Phungsai et al. (2018), Andersson et al. (2021)
C ₁₃ H ₂₅ O ₂ Cl ₃	318.0920		~			
C ₈ H ₇ O ₇ Cl ₃	319.9257	\checkmark				
C ₁₁ H ₁₉ O ₄ Cl ₃	320.0349				√	
C ₁₂ H ₂₃ O ₃ Cl ₃	320.0713				√	
$C_{10}H_4O_8Cl_2$	321.9283				√	

DBP formula	Theo. MW	Preser	nce(s) of D	BPs in this	s study	- Also reported in reference(s)
DBr Ioiniula	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	Also reported in reference(s)
$C_{11}H_8O_7Cl_2$	321.9647	\checkmark				Lavonen et al. (2013), Zhang et al. (2014)
C ₁₈ H ₂₅ O ₃ Cl	324.1492			~		
$C_{16}H_{30}O_2Cl_2$	324.1623		~			
$C_{10}H_8O_8Cl_2$	325.9596				√	
$C_{14}H_{21}O_2Cl_3$	326.0607		~			
$C_{18}H_{27}O_3Cl$	326.1649			\checkmark		
$\mathrm{C}_{16}\mathrm{H}_{32}\mathrm{O}_{2}\mathrm{Cl}_{2}$	326.1779		~			
$C_{12}H_5O_9Cl$	327.9622		\checkmark			Lavonen et al. (2013), Zhang et al. (2014)
$C_{14}H_{25}O_2Cl_3$	330.0920		\checkmark			
C ₁₃ H ₂₃ O ₃ Cl ₃	332.0713		\checkmark			
$C_{19}H_{18}OCl_2$	332.0735				\checkmark	
$C_{12}H_{10}O_7Cl_2$	335.9804		\checkmark			Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
$C_{12}H_{13}O_9Cl$	336.0248			\checkmark		Lavonen et al. (2013), Zhang et al. (2014)
$C_{17}H_{30}O_2Cl_2$	336.1623		\checkmark			
$C_{11}H_{10}O_8Cl_2$	339.9753				\checkmark	Lavonen et al. (2013), Zhang et al. (2014)
$C_{12}H_{14}O_7Cl_2$	340.0117				\checkmark	Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₁ H ₁₃ O ₁₀ Cl	340.0197			~		
$C_{10}H_{19}O_6Cl_3$	340.0247		~			
C ₁₈ H ₂₅ O ₄ Cl	340.1441			~		Lavonen et al. (2013)
C ₁₆ H ₃₀ O ₃ Cl ₂	340.1572		~			
C ₁₆ H ₁₉ O ₆ Cl	342.0870				~	Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
$C_{16}H_{32}O_3Cl_2$	342.1729		~			
C ₁₇ H ₂₅ O ₅ Cl	344.1391			~		Lavonen et al. (2013)
C14H15O8Cl	346.0455		~			Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₅ H ₁₉ O ₇ Cl	346.0819		~			Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₄ H ₂₅ O ₃ Cl ₃	346.0869		~			
C ₁₅ H ₂₉ O ₂ Cl ₃	346.1233		~			
C ₁₉ H ₃₄ OCl ₂	348.1987		~			
$C_{12}H_{10}O_8Cl_2$	351.9753		~			Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₂ H ₂₃ O ₅ Cl ₃	352.0611				~	
C ₁₅ H ₂₅ O ₇ Cl	352.1289	\checkmark				Lavonen et al. (2013)
C ₁₄ H ₁₇ O ₄ Cl ₃	354.0192			~		
$C_{13}H_2O_8Cl_2$	355.9127	\checkmark				
C ₉ H ₁₈ O ₁₀ Cl ₂	356.0277		~			
C ₁₅ H ₁₃ O ₈ Cl	356.0299		~			Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₈ H ₂₅ O ₅ Cl	356.1391			~		Lavonen et al. (2013)
C ₁₅ H ₂₅ O ₃ Cl ₃	358.0869		~			

DBP formula	Theo. MW	Preser	nce(s) of D	BPs in this	s study	Also reported in reference(c)
DBP formula	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	Also reported in reference(s)
C ₁₄ H ₂₇ O ₈ Cl	358.1394			~		
$C_{19}H_{30}O_2Cl_2$	360.1623			~		
C ₁₄ H ₂₅ O ₄ Cl ₃	362.0818		~			
$C_{14}H_{14}O_7Cl_2$	364.0117		~			Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₆ H ₁₉ O ₃ Cl ₃	364.0400			~		
C ₁₆ H ₂₁ O ₃ Cl ₃	366.0556			~		
C ₁₆ H ₂₇ O ₇ Cl	366.1445			~		Lavonen et al. (2013)
C ₁₇ H ₃₀ O ₄ Cl ₂	368.1521		~			
C ₂₀ H ₂₉ O ₄ Cl	368.1754				√	Lavonen et al. (2013)
C ₁₆ H ₁₇ O ₈ Cl	372.0612		√			Lavonen et al. (2013), Zhang et al. (2014), Andersson et al. (2021)
C ₁₈ H ₂₇ O ₆ Cl	374.1496			~		Lavonen et al. (2013), Andersson et al. (2021)
C ₁₁ H ₂₂ O ₁₀ Cl ₂	384.0590		~			
C ₁₇ H ₂₉ O ₃ Cl ₃	386.1182		~			
C ₁₉ H ₃₇ OCl ₃	386.1910		~			
C ₁₆ H ₂₇ O ₄ Cl ₃	388.0975		~			
C ₁₇ H ₃₁ O ₃ Cl ₃	388.1339		~			
C ₁₈ H ₃₅ O ₂ Cl ₃	388.1703		~			
$C_{19}H_{36}O_4Cl_2$	398.1991	\checkmark				
C ₂₀ H ₂₉ O ₆ Cl	400.1653		~			Lavonen et al. (2013)
C ₁₇ H ₂₉ O ₄ Cl ₃	402.1131		~			
C ₁₉ H ₃₇ O ₂ Cl ₃	402.1859		~			
$C_{18}H_{36}O_5Cl_2$	402.1940			~		
$C_{17}H_{31}O_4Cl_3$	404.1288		~			
C ₁₈ H ₃₅ O ₃ Cl ₃	404.1652		~			
C ₁₇ H ₂₅ O ₅ Cl ₃	414.0768				√	
$C_{19}H_{33}O_3Cl_3$	414.1495		~			
$C_{19}H_{37}O_{3}Cl_{3}$	418.1808		~			
C ₁₇ H ₂₃ O ₁₀ Cl	422.0980			\checkmark		Lavonen et al. (2013), Zhang et al. (2014)
C17H19O6Cl3	424.0247			\checkmark		
C ₂₅ H ₂₇ O ₄ Cl	426.1598		~			
C ₁₈ H ₃₃ O ₅ Cl ₃	434.1394		~			
C17H33O6Cl3	438.1343	\checkmark				
C19H31O9Cl	438.1657			\checkmark		
C ₁₈ H ₃₃ O ₆ Cl ₃	450.1343		\checkmark			
C19H29O6Cl3	458.1030				\checkmark	
C24H23O7Cl	458.1132				\checkmark	
C ₂₅ H ₁₇ O ₇ Cl	464.0663		~			
$\mathrm{C}_{24}\mathrm{H}_{17}\mathrm{O}_8\mathrm{Cl}$	468.0612		\checkmark			

DBP formula	Theo. MW	Presence(s) of DBPs in this study Also reported in reference				
	(Da)	RW-Cl ₂ CW-Cl ₂ FW-Cl ₂ Finished water Also reported in		Also reported in reference(s)		
C ₁₉ H ₂₅ O ₇ Cl ₃	470.0666	\checkmark				
C ₁₅ H ₂₁ O ₁₅ Cl	476.0569		\checkmark			

References

- A. Andersson, M. Gonsior, M. Harir, N. Hertkorn, P. Schmitt-Kopplin, L. Powers, H. Kylin, D. Hellström, K. Nilsson, Ä. Pettersson, H. Stavklint and D. Bastviken, Environmental Science: Water Research & Technology, 2021, 7, 2335-2345.
- M. Gonsior, P. Schmitt-Kopplin, H. Stavklint, S. D. Richardson, N. Hertkorn and D. Bastviken, Environ Sci Technol, 2014, 48, 12714-12722.
- E. E. Lavonen, M. Gonsior, L. J. Tranvik, P. Schmitt-Kopplin and S. J. Kohler, Environ Sci Technol, 2013, 47, 2264-2271.
- P. Phungsai, F. Kurisu, I. Kasuga and H. Furumai, Environmental Science & Technology, 2018, 52, 3392-3401.
- Y. Zhang, W. Chu, D. Yao and D. Yin, J Environ Sci (China), 2017, 58, 322-330.

Table S5 CHON-DBPs detected in chlorinated samples and finished water in this study. RW-Cl₂, CW-Cl₂, and FW-Cl₂ denote chlorinated raw water, chlorinated clarified water, and chlorinated filtered water, respectively.

DBP formula	Theo. MW	Presence(s) of DBPs in this study				
DBP formula	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	
$C_{12}H_{15}ON_2Cl_3$	308.0250	\checkmark	\checkmark	\checkmark	√	
$C_{14}H_{17}O_2N_2Cl_3$	350.0356	\checkmark	\checkmark	\checkmark	√	
$C_{12}H_{26}O_6N_2Cl_2$	364.1168	\checkmark	\checkmark	\checkmark	√	
$C_{15}H_{21}O_2N_2Cl_3$	366.0669	\checkmark	\checkmark	\checkmark	√	
$C_{12}H_{25}O_4N_2Cl_3$	366.0880	\checkmark	\checkmark	\checkmark	√	
$C_{16}H_{23}O_3N_2Cl_3$	396.0774	\checkmark	\checkmark	\checkmark	√	
$C_{11}H_{20}O_{10}N_2Cl_2$	410.0495	\checkmark	\checkmark	\checkmark	\checkmark	
$C_{18}H_{25}O_3N_2Cl_3$	422.0931	\checkmark	\checkmark	\checkmark	\checkmark	
$C_{14}H_{27}O_{12}N_2Cl$	450.1253	\checkmark	\checkmark	\checkmark	\checkmark	
$C_{15}H_{31}O_{11}N_2Cl$	450.1616	\checkmark	\checkmark	\checkmark	√	
C ₆ H ₆ ON ₂ Cl ₂	191.9857	\checkmark	\checkmark	\checkmark		
C ₇ H ₁₂ O ₂ NCl ₃	246.9934	\checkmark	\checkmark	\checkmark		
$C_{11}H_{12}ON_2Cl_2$	258.0327	\checkmark	\checkmark		√	
$C_9H_{14}O_3N_2Cl_2$	268.0381		\checkmark	\checkmark	√	
C ₉ H ₁₉ ON ₂ Cl ₃	276.0563	\checkmark	\checkmark	\checkmark		
$C_9H_{17}O_2N_2Cl_3$	290.0356	\checkmark	\checkmark	\checkmark		
$C_{14}H_7O_4N_2Cl$	302.0094		\checkmark	\checkmark	√	
$C_{11}H_{15}O_2N_2Cl_3$	312.0199	\checkmark	\checkmark	\checkmark		
$C_{15}H_{18}ON_2Cl_2$	312.0796	\checkmark	\checkmark	\checkmark		
$C_{13}H_{17}ON_2Cl_3$	322.0406	\checkmark	\checkmark	\checkmark		
C ₁₂ H ₁₉ O ₂ N ₂ Cl ₃	328.0512	\checkmark	\checkmark	\checkmark		
$C_{12}H_{21}O_2N_2Cl_3$	330.0669	\checkmark	\checkmark	\checkmark		
$C_{13}H_{17}O_2N_2Cl_3$	338.0356	\checkmark	\checkmark	\checkmark		
$C_{20}H_{21}ON_2Cl$	340.1342	\checkmark		\checkmark	√	
$C_{17}H_{26}ON_2Cl_2$	344.1422	\checkmark	\checkmark		√	
$C_{15}H_{19}ON_2Cl_3$	348.0563	\checkmark	\checkmark	\checkmark		
$C_{15}H_{21}ON_2Cl_3$	350.0719	\checkmark	\checkmark	\checkmark		
$C_{14}H_{19}O_2N_2Cl_3$	352.0512	\checkmark	\checkmark	\checkmark		
$C_{15}H_{25}ON_2Cl_3$	354.1032	\checkmark	\checkmark	\checkmark		
$C_{17}H_{24}O_2N_2Cl_2$	358.1215	\checkmark	\checkmark	\checkmark		
C ₂₁ H ₃₁ ON ₂ Cl	362.2125	\checkmark	\checkmark	\checkmark		
$C_{15}H_{19}O_2N_2Cl_3$	364.0512	\checkmark		\checkmark	√	
C ₁₅ H ₂₅ O ₆ N ₂ Cl	364.1401	\checkmark	\checkmark	\checkmark		
$C_{13}H_{15}O_4N_2Cl_3$	368.0097	\checkmark	\checkmark		√	
$C_{14}H_{19}O_3N_2Cl_3$	368.0461	\checkmark	\checkmark	\checkmark		
C ₁₅ H ₂₃ O ₂ N ₂ Cl ₃	368.0825	\checkmark	√	\checkmark		

	Theo. MW	Presence(s) of DBPs in this study			
DBP formula	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water
C ₁₀ H ₂₁ O ₉ NCl ₂	369.0593	\checkmark	√	\checkmark	
$C_{18}H_{26}O_2N_2Cl_2$	372.1371	\checkmark	\checkmark		\checkmark
C ₁₉ H ₃₀ ON ₂ Cl ₂	372.1735	\checkmark	\checkmark	\checkmark	
C ₁₇ H ₂₅ ON ₂ Cl ₃	378.1032	\checkmark	\checkmark	\checkmark	
C ₁₁ H ₂₂ O ₁₁ NCl	379.0881	\checkmark	\checkmark	\checkmark	
$C_{15}H_{19}O_3N_2Cl_3$	380.0461	\checkmark	\checkmark	\checkmark	
$C_{16}H_{23}O_2N_2Cl_3$	380.0825	\checkmark	\checkmark	\checkmark	
C ₁₆ H ₂₅ O ₂ N ₂ Cl ₃	382.0982	\checkmark	\checkmark	\checkmark	
$C_{19}H_{28}O_2N_2Cl_2$	386.1528	\checkmark	\checkmark		\checkmark
$C_{17}H_{21}O_2N_2Cl_3$	390.0669	\checkmark	\checkmark	\checkmark	
C ₁₈ H ₂₅ ON ₂ Cl ₃	390.1032	\checkmark	√	\checkmark	
$C_{16}H_{21}O_3N_2Cl_3$	394.0618	\checkmark	√	\checkmark	
$C_{17}H_{25}O_2N_2Cl_3$	394.0982	\checkmark	√	\checkmark	
$C_{11}H_{23}O_{11}N_2Cl$	394.0990	\checkmark	\checkmark	\checkmark	
$C_{11}H_{22}O_9N_2Cl_2$	396.0702	\checkmark	\checkmark	\checkmark	
$C_{19}H_{32}O_3N_2Cl_2$	406.1790	\checkmark	\checkmark	\checkmark	
C ₁₇ H ₂₅ O ₃ N ₂ Cl ₃	410.0931	\checkmark	\checkmark	\checkmark	
C ₁₆ H ₂₃ O ₄ N ₂ Cl ₃	412.0723	\checkmark	\checkmark	\checkmark	
$C_{22}H_{22}O_2N_2Cl_2$	416.1058	\checkmark	\checkmark	\checkmark	
$C_{19}H_{25}O_2N_2Cl_3$	418.0982	\checkmark	\checkmark	\checkmark	
C ₁₃ H ₂₅ O ₁₁ N ₂ Cl	420.1147	\checkmark	\checkmark	\checkmark	
$C_{17}H_{23}O_4N_2Cl_3$	424.0723	\checkmark	\checkmark	\checkmark	
$C_{18}H_{27}O_3N_2Cl_3$	424.1087	\checkmark	\checkmark	\checkmark	
$C_{18}H_{19}O_8N_2Cl$	426.0830	\checkmark	\checkmark	\checkmark	
$C_{22}H_{20}O_3N_2Cl_2$	430.0851	\checkmark	\checkmark	\checkmark	
$C_{13}H_{23}O_{12}N_2Cl$	434.0940	\checkmark	\checkmark	\checkmark	
C ₁₃ H ₂₅ O ₁₂ N ₂ Cl	436.1096	\checkmark	\checkmark	\checkmark	
$C_{20}H_{29}O_3N_2Cl_3$	450.1244	\checkmark	\checkmark	\checkmark	
$C_{15}H_{29}O_{12}N_2Cl$	464.1409	\checkmark	\checkmark	\checkmark	
$C_{19}H_{29}O_5N_2Cl_3$	470.1142	\checkmark	√	\checkmark	
C ₂₁ H ₂₆ O ₁₀ NCl	487.1245	\checkmark	√	\checkmark	
$C_{14}H_{17}O_{11}N_2Cl_3$	493.9898	\checkmark	√	\checkmark	
$C_5H_7O_2N_2Cl$	162.0196	\checkmark	√		
$C_6H_1O_2N_2Cl$	167.9727		√		\checkmark
$C_2H_5O_2N_2Cl_3$	193.9417			\checkmark	√
$C_6H_6O_2N_2Cl_2$	207.9806	\checkmark	√		
C ₇ H ₃ O ₄ N ₂ Cl	213.9781	\checkmark	√		
C ₈ H ₈ O ₄ NCl	217.0142		√		\checkmark
C ₉ H ₁ O ₄ N ₂ Cl	235.9625	\checkmark	\checkmark		

DBP formula	Theo. MW	Presence(s) of DBPs in this study			
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water
$C_9H_{11}O_4N_2Cl$	246.0407			\checkmark	\checkmark
C ₈ H ₅ O ₄ NCl ₂	248.9596	\checkmark			\checkmark
$C_8H_{10}O_3N_2Cl_2$	252.0068		\checkmark	\checkmark	
$C_{11}H_{14}ON_2Cl_2$	260.0483		\checkmark		\checkmark
$C_{11}H_{18}ON_2Cl_2$	264.0796		\checkmark		\checkmark
$C_{9}H_{12}O_{3}N_{2}Cl_{2}$	266.0225	\checkmark	\checkmark		
$C_{14}H_7O_2N_2Cl$	270.0196		\checkmark	\checkmark	
$C_{15}H_{21}ON_2Cl$	280.1342		\checkmark	\checkmark	
$C_{10}H_{13}ON_2Cl_3$	282.0093	\checkmark			\checkmark
C ₁₃ H ₁₇ O ₃ N ₂ Cl	284.0928		\checkmark		\checkmark
C ₁₇ H ₁₆ ONCl	285.0920	\checkmark		\checkmark	
$C_{9}H_{15}O_{2}N_{2}Cl_{3}$	288.0199		\checkmark	\checkmark	
$C_{13}H_{18}ON_2Cl_2$	288.0796	\checkmark	\checkmark		
C ₈ H ₁₉ O ₇ N ₂ Cl	290.0881	\checkmark	\checkmark		
C ₈ H ₁₅ O ₃ N ₂ Cl ₃	292.0148		\checkmark	\checkmark	
C ₁₄ H ₁₀ ON ₂ Cl ₂	292.0170		\checkmark	\checkmark	
C ₇ H ₁₇ O ₈ N ₂ Cl	292.0673		√	\checkmark	
C ₁₂ H ₁₈ O ₂ N ₂ Cl ₂	292.0745	\checkmark	√		
C ₆ H ₁₄ O ₇ N ₂ Cl ₂	296.0178	\checkmark	\checkmark		
C ₁₀ H ₁₃ O ₂ N ₂ Cl ₃	298.0043	\checkmark	\checkmark		
C ₁₇ H ₁₅ ON ₂ Cl	298.0873	\checkmark		\checkmark	
C ₁₈ H ₁₈ ONCl	299.1077	\checkmark		\checkmark	
C ₁₆ H ₁₃ O ₂ N ₂ Cl	300.0666			\checkmark	√
C ₁₄ H ₁₈ ON ₂ Cl ₂	300.0796	\checkmark	√		
C ₁₂ H ₂₂ ONCl ₃	301.0767		\checkmark		√
C ₁₄ H ₂₂ ON ₂ Cl ₂	304.1109	\checkmark		\checkmark	
C ₈ H ₁₆ O ₆ N ₂ Cl ₂	306.0385	\checkmark	√		
C ₈ H ₁₈ O ₆ N ₂ Cl ₂	308.0542	\checkmark	√		
C ₁₂ H ₁₉ ON ₂ Cl ₃	312.0563		\checkmark	\checkmark	
C ₁₇ H ₁₃ O ₂ N ₂ Cl	312.0666		√	\checkmark	
C ₁₅ H ₂₃ O ₃ N ₂ Cl	314.1397		\checkmark		√
C ₉ H ₁₄ O ₉ NCl	315.0357	\checkmark	↓ ↓		-
C ₁₅ H ₂₂ ON ₂ Cl ₂	316.1109		 √		\checkmark
C ₁₅ H ₂₄ ON ₂ Cl ₂	318.1266	\checkmark	 ✓		
C ₁₂ H ₁₃ O ₂ N ₂ Cl ₃	322.0043	 √	√ √		
C ₁₂ H ₁₅ O ₂ N ₂ Cl ₃	324.0199	 √	· ·		\checkmark
C ₁₃ H ₁₉ ON ₂ Cl ₃	324.0563	 √	\checkmark		
$C_{11}H_{13}O_3N_2Cl_3$	325.9992	 √	√ √		
$\frac{11}{C_{13}H_{21}ON_2Cl_3}$	326.0719	v	✓ ✓	\checkmark	

DBP formula	Theo. MW		Presence(s) of DBPs in this study			
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	
$C_{17}H_{27}O_2N_2Cl$	326.1761	\checkmark	√			
C ₁₂ H ₂₄ O ₇ NCl	329.1241	\checkmark	\checkmark			
C ₁₆ H ₂₇ O ₃ N ₂ Cl	330.1710	\checkmark	\checkmark			
$C_{10}H_{17}O_4N_2Cl_3$	334.0254			\checkmark	√	
$C_{16}H_{12}O_2N_2Cl_2$	334.0276			\checkmark	\checkmark	
C ₁₄ H ₁₇ ON ₂ Cl ₃	334.0406		\checkmark	\checkmark		
$C_{15}H_{24}O_2N_2Cl_2$	334.1215	\checkmark	\checkmark			
C ₁₉ H ₂₇ ON ₂ Cl	334.1812		\checkmark	\checkmark		
$C_9H_{21}O_9N_2Cl$	336.0936	\checkmark	\checkmark			
$C_{15}H_{26}O_2N_2Cl_2$	336.1371	\checkmark	\checkmark			
C ₁₈ H ₂₅ O ₂ N ₂ Cl	336.1605	\checkmark	\checkmark			
C ₁₉ H ₂₉ ON ₂ Cl	336.1968		\checkmark	\checkmark		
C ₁₂ H ₁₃ O ₃ N ₂ Cl ₃	337.9992	\checkmark	\checkmark			
C ₁₂ H ₁₅ O ₃ N ₂ Cl ₃	340.0148	\checkmark	√			
C ₁₈ H ₁₃ O ₃ N ₂ Cl	340.0615		√		√	
C ₁₇ H ₂₂ ON ₂ Cl ₂	340.1109	\checkmark	√			
C ₁₆ H ₉ O ₅ N ₂ Cl	344.0200		\checkmark	\checkmark		
C ₁₆ H ₂₁ O ₃ NCl ₂	345.0899			\checkmark	\checkmark	
C ₁₆ H ₁₁ O ₅ N ₂ Cl	346.0357		√	\checkmark		
C ₁₃ H ₂₄ O ₃ NCl ₃	347.0822		 √		\checkmark	
C ₁₉ H ₂₅ O ₂ N ₂ Cl	348.1605		 √		√	
C ₂₀ H ₃₁ ON ₂ Cl	350.2125		√	\checkmark	•	
C ₁₄ H ₂₁ O ₂ N ₂ Cl ₃	354.0669		↓ ↓	\checkmark		
C ₁₈ H ₂₆ ON ₂ Cl ₂	356.1422	\checkmark	↓ ↓	v		
$C_{12}H_7O_9N_2Cl$	357.9840	v	√ √	\checkmark		
C ₁₉ H ₁₉ O ₃ N ₂ Cl	358.1084		· ·	\checkmark	√	
$10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{$	360.0563		\checkmark	√ √	· · ·	
$C_{16}H_{21}ON_2Cl_3$	362.0719		√	√ √		
$\frac{10^{-21} - 2^{-5}}{C_{10}H_{19}O_{10}N_2Cl}$	362.0719	\checkmark	✓ ✓	v		
$C_{14}H_{15}O_3N_2Cl_3$	364.0148	 √	√			
$C_{15}H_{22}O_4N_2Cl_2$	364.0148	v	✓ ✓	\checkmark		
$C_{19}H_{25}O_{3}N_{2}Cl$	364.0937	\checkmark	✓ ✓			
$C_{16}H_{29}O_5N_2Cl$	364.1354	 ✓		\checkmark		
$C_{16}H_{29}O_{31}V_{2}O_{1}$	366.1032	v	√			
$C_{19}H_{29}O_{3}N_{2}Cl$	368.1867		\checkmark	\checkmark	√	
$C_{22}H_{31}ON_2Cl$	374.2125			\checkmark	~	
$C_{22}H_{31}OV_{2}CI$ $C_{16}H_{19}O_{2}N_{2}CI_{3}$		/	\checkmark	√		
$C_{16}H_{19}O_{2}V_{2}C_{13}$ $C_{17}H_{23}ON_{2}Cl_{3}$	376.0512		\checkmark			
$C_{17}H_{23}OIV_{2}CI_{3}$ $C_{14}H_{25}O_{8}N_{2}CI$	376.0876	\checkmark	\checkmark			
C141125081V2CI	384.1299		\checkmark		\checkmark	

DBP formula	Theo. MW	Presence(s) of DBPs in this study			
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water
$C_{12}H_{23}O_{10}N_2Cl$	390.1041	\checkmark	√		
$C_{11}H_{21}O_{11}N_2Cl$	392.0834	\checkmark	\checkmark		
C ₁₅ H ₂₄ O ₉ NCl	397.1140		\checkmark		\checkmark
$C_{18}H_{17}O_2N_2Cl_3$	398.0356		\checkmark	\checkmark	
$C_{22}H_{23}O_3N_2Cl$	398.1397		\checkmark	\checkmark	
$C_{10}H_{19}O_8N_2Cl_3$	400.0207	\checkmark			\checkmark
$C_{20}H_{30}O_2N_2Cl_2$	400.1684	\checkmark	\checkmark		
$C_{17}H_9O_8N_2Cl$	404.0047		\checkmark	\checkmark	
$C_{18}H_{13}O_7N_2Cl$	404.0411		\checkmark	\checkmark	
$C_{18}H_{25}O_2N_2Cl_3$	406.0982		\checkmark	\checkmark	
C ₁₉ H ₂₉ ON ₂ Cl ₃	406.1345	\checkmark	√		
$C_{14}H_{31}O_9N_2Cl$	406.1718	\checkmark		\checkmark	
$C_{17}H_{23}O_3N_2Cl_3$	408.0774	\checkmark	\checkmark		
C ₂₀ H ₂₅ O ₅ N ₂ Cl	408.1452		\checkmark	\checkmark	
$C_{16}H_{21}O_4N_2Cl_3$	410.0567	\checkmark		\checkmark	
C ₁₉ H ₂₅ O ₆ N ₂ Cl	412.1401		\checkmark		\checkmark
$C_{21}H_{18}O_3N_2Cl_2$	416.0694	\checkmark	\checkmark		
C ₁₉ H ₂₃ O ₂ N ₂ Cl ₃	416.0825		\checkmark	\checkmark	
C ₁₉ H ₂₉ O ₂ N ₂ Cl ₃	422.1295	\checkmark	\checkmark		
C ₁₆ H ₂₇ O ₉ N ₂ Cl	426.1405		\checkmark	\checkmark	
$C_{14}H_{26}O_9N_2Cl_2$	436.1015		\checkmark	\checkmark	
C ₁₈ H ₂₇ O ₄ N ₂ Cl ₃	440.1036		\checkmark	\checkmark	
$C_{18}H_{16}O_7N_2Cl_2$	442.0335		\checkmark	\checkmark	
C ₁₅ H ₂₇ O ₁₁ N ₂ Cl	446.1303	\checkmark	\checkmark		
$C_{13}H_{22}O_{11}N_2Cl_2$	452.0601		\checkmark	\checkmark	
C ₁₉ H ₃₃ O ₁₁ N ₂ Cl	500.1773			\checkmark	\checkmark
C ₅ H ₆ O ₂ NCl	147.0087		\checkmark		
C ₅ H ₁ ONCl ₂	160.9435				\checkmark
C ₆ H ₈ O ₂ NCl	161.0244				\checkmark
C ₇ H ₉ ON ₂ Cl	172.0403				√
C ₈ H ₅ ON ₂ Cl	180.0090			\checkmark	
$C_6H_1O_3N_2Cl$	183.9676	\checkmark			
$C_5H_{10}ON_2Cl_2$	184.0170			\checkmark	
C ₄ H ₉ O ₄ N ₂ Cl	184.0251				√
C ₇ H ₄ O ₃ NCl	184.9880		√		
C ₅ H ₁ O ₄ N ₂ Cl	187.9625				√
C ₆ H ₇ O ₃ N ₂ Cl	190.0145			\checkmark	
C ₇ H ₃ O ₃ N ₂ Cl	197.9832	\checkmark			
C ₉ H ₁₁ ON ₂ Cl	198.0560		\checkmark		

DBP formula	Theo. MW		Presence(s) of DBPs in this study			
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	
C ₈ H ₁₃ O ₂ N ₂ Cl	204.0666		\checkmark			
C ₈ H ₄ O ₄ NCl	212.9829		\checkmark			
C ₁₁ H ₅ ON ₂ Cl	216.0090				√	
$C_7H_4O_2N_2Cl_2$	217.9650	\checkmark				
C ₉ H ₁₄ O ₃ NCl	219.0662	\checkmark				
$C_7H_8O_2N_2Cl_2$	221.9963				\checkmark	
C ₁₁ H ₁₃ ON ₂ Cl	224.0716		\checkmark			
$C_7H_{12}O_2N_2Cl_2$	226.0276			\checkmark		
C ₆ H ₇ ON ₂ Cl ₃	227.9624	\checkmark				
C ₉ H ₆ ON ₂ Cl ₂	227.9857	\checkmark				
C ₁₁ H ₁₉ ON ₂ Cl	230.1186		\checkmark			
C ₁₂ H ₉ ON ₂ Cl	232.0403				√	
C ₁₂ H ₁₁ ON ₂ Cl	234.0560				√	
C ₉ H ₁₅ O ₃ N ₂ Cl	234.0771		\checkmark			
C ₉ H ₁₄ ON ₂ Cl ₂	236.0483				√	
C ₇ H ₇ ON ₂ Cl ₃	239.9624				√	
C ₉ H ₄ O ₅ NCl	240.9778				√	
C ₁₀ H ₁₀ ON ₂ Cl ₂	244.0170				√	
C ₁₃ H ₉ ON ₂ Cl	244.0403				√	
C ₁₀ H ₁₂ ON ₂ Cl ₂	246.0327	\checkmark			•	
C ₇ H ₅ O ₆ N ₂ Cl	247.9836	•			√	
C ₁₀ H ₁₇ O ₃ N ₂ Cl	248.0928		\checkmark			
C ₈ H ₅ ON ₂ Cl ₃	249.9467	\checkmark	· · ·			
$C_{13}H_{17}ON_2Cl$	252.1029	•	\checkmark			
C ₁₁ H ₂₄ O ₃ NCl	253.1445		√			
$C_7H_5O_2N_2Cl_3$	253.9417		√			
$\frac{1}{C_8H_{11}O_4NCl_2}$	255.0065		• •		√	
$\frac{C_{13}H_{21}ON_2Cl}{C_{13}H_{21}ON_2Cl}$	255.0003		\checkmark			
$C_9H_7O_5N_2Cl$	258.0044		v		√	
$C_{12}H_{19}O_2N_2Cl$	258.1135		\checkmark		v	
$C_{10}H_{10}O_2N_2Cl_2$	260.0119	\checkmark	v			
C ₉ H ₉ ON ₂ Cl ₃	265.9780	 √				
C ₅ H ₁₂ O ₆ N ₂ Cl ₂	266.0072	 √				
$C_{11}H_6O_2N_2Cl_2$	267.9806	V				
$C_{12}H_{10}ON_2Cl_2$	267.9800				 ✓	
$C_{11}H_{22}ON_2Cl_2$	268.0170		√		V	
C ₁₀ H ₁₇ O ₃ NCl ₂	268.1109					
$C_{10}H_{17}O_{3}HC_{12}$ $C_{12}H_{12}ON_{2}Cl_{2}$		/			√	
$C_{12}H_{12}O_{1}V_{2}Cl_{2}$ $C_{10}H_{20}O_{2}N_{2}Cl_{2}$	270.0327	\checkmark		,		
C101120C21V2C12	270.0902			\checkmark		

DBP formula	Theo. MW	Presence(s) of DBPs in this study			
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water
C ₁₄ H ₂₃ ON ₂ Cl	270.1499		√		
C ₁₀ H ₆ O ₆ NCl	270.9884		\checkmark		
$C_{10}H_5O_4NCl_2$	272.9596		\checkmark		
C ₁₀ H ₈ O ₆ NCl	273.0040		\checkmark		
$C_{11}H_{12}O_2N_2Cl_2$	274.0276		\checkmark		
$C_{12}H_{18}ON_2Cl_2$	276.0796		\checkmark		
C ₁₅ H ₁₇ ON ₂ Cl	276.1029		\checkmark		
C ₁₀ H ₁₂ O ₆ NCl	277.0353				√
$C_9H_7O_2N_2Cl_3$	279.9573				√
$C_{12}H_9O_4N_2Cl$	280.0251				√
C ₁₄ H ₁₇ O ₂ N ₂ Cl	280.0979		√		
C ₁₂ H ₂₂ ON ₂ Cl ₂	280.1109				√
C ₉ H ₆ O ₃ NCl ₃	280.9413		\checkmark		
C ₁₁ H ₂₀ O ₅ NCl	281.1030			\checkmark	
C ₁₂ H ₂₄ O ₄ NCl	281.1394		√		
C ₉ H ₉ O ₂ N ₂ Cl ₃	281.9730	\checkmark			
C ₁₀ H ₁₆ O ₃ N ₂ Cl ₂	282.0538			\checkmark	
C ₁₅ H ₂₃ ON ₂ Cl	282.1499		\checkmark		
C ₁₂ H ₁₀ O ₅ NCl	283.0248				√
C ₁₁ H ₂₂ O ₅ NCl	283.1187				√
C ₁₂ H ₁₀ O ₂ N ₂ Cl ₂	284.0119	\checkmark			
C ₁₆ H ₁₃ ON ₂ Cl	284.0716	-	\checkmark		
$C_{11}H_{22}O_2N_2Cl_2$	284.1058			\checkmark	
C ₁₅ H ₂₅ ON ₂ Cl	284.1655		\checkmark	v	
$C_{14}H_7O_3N_2Cl$	286.0145		↓ ↓		
C ₁₅ H ₁₁ O ₂ N ₂ Cl	286.0509		· ·	\checkmark	
$\frac{10^{-11} \text{ C}_{13} \text{ H}_{16} \text{ ON}_2 \text{ Cl}_2}{\text{ C}_{13} \text{ H}_{16} \text{ ON}_2 \text{ Cl}_2}$	286.0640		\checkmark	v	
$\frac{10^{-10} \text{ C}_{16}}{\text{C}_{16}\text{H}_{15}\text{ON}_2\text{Cl}}$	286.0873		· ·	\checkmark	
$\frac{10^{-10}}{C_{16}H_{17}ON_2Cl}$	288.1029			\checkmark	
$\frac{10^{-17}}{C_{10}H_{18}O_2NCl_3}$	289.0403			v	√
$\frac{C_{13}H_7O_4N_2Cl}{C_{13}H_7O_4N_2Cl}$	290.0094				 √
$C_{13}H_{20}ON_2Cl_2$	290.0094		√		V
$C_{10}H_7O_2N_2Cl_3$	290.0933				√
$C_{12}H_5O_5N_2Cl$	291.9373		√		V
$C_{14}H_{13}O_{3}N_{2}Cl$	291.9887				√
$C_{16}H_{21}ON_2Cl$	292.0613		/		V
$C_{16}H_{21}ON_{2}Cl$ $C_{12}H_{7}O_{5}N_{2}Cl$			√		
$\frac{C_{12}H_7O_5N_2Cl}{C_{16}H_{23}ON_2Cl}$	294.0044				\checkmark
$\frac{C_{16}H_{23}O_{1}V_{2}C_{1}}{C_{11}H_{18}O_{3}N_{2}Cl_{2}}$	294.1499		√		
	296.0694			\checkmark	

DBP formula	Theo. MW	Presence(s) of DBPs in this study			
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water
C ₁₆ H ₂₅ ON ₂ Cl	296.1655		√		
$C_{16}H_{11}O_2N_2Cl$	298.0509			\checkmark	
$C_{13}H_{15}O_4N_2Cl$	298.0720		\checkmark		
$C_{13}H_{17}O_4N_2Cl$	300.0877		\checkmark		
$C_{17}H_{17}ON_2Cl$	300.1029			\checkmark	
$C_9H_{13}O_3N_2Cl_3$	301.9992				\checkmark
$C_{14}H_{20}ON_2Cl_2$	302.0953		\checkmark		
$C_9H_{15}O_3N_2Cl_3$	304.0148			\checkmark	
$C_{12}H_{17}O_5N_2Cl$	304.0826		\checkmark		
C ₁₇ H ₂₁ ON ₂ Cl	304.1342		\checkmark		
C ₁₀ H ₁₈ O ₃ NCl ₃	305.0352				\checkmark
$C_{12}H_{16}O_3N_2Cl_2$	306.0538		√		
C ₁₄ H ₂₄ ON ₂ Cl ₂	306.1266		√		
C ₁₇ H ₂₃ ON ₂ Cl	306.1499		√		
C ₁₂ H ₁₅ O ₄ NCl ₂	307.0378				\checkmark
C ₁₁ H ₁₁ O ₂ N ₂ Cl ₃	307.9886	\checkmark			
C ₁₆ H ₂₁ O ₂ N ₂ Cl	308.1292		√		
C ₁₇ H ₂₅ ON ₂ Cl	308.1655		√		
C ₁₃ H ₂₄ O ₂ N ₂ Cl ₂	310.1215		\checkmark		
C ₁₆ H ₂₃ O ₂ N ₂ Cl	310.1448		\checkmark		
C ₁₈ H ₁₇ ON ₂ Cl	312.1029			\checkmark	
C ₁₁ H ₂₁ O ₆ N ₂ Cl	312.1088		√		
C ₁₆ H ₂₅ O ₂ N ₂ Cl	312.1605		\checkmark		
C ₁₇ H ₁₂ O ₃ NCl	313.0506				\checkmark
C ₁₄ H ₁₉ O ₄ N ₂ Cl	314.1033		\checkmark		
C ₁₂ H ₇ O ₂ N ₂ Cl ₃	315.9573	\checkmark			
C ₁₅ H ₉ O ₄ N ₂ Cl	316.0251			\checkmark	
C ₁₆ H ₁₃ O ₃ N ₂ Cl	316.0615			\checkmark	
C ₁₇ H ₁₇ O ₂ N ₂ Cl	316.0979			\checkmark	
C ₁₅ H ₂₅ O ₃ N ₂ Cl	316.1554		√		
C ₁₁ H ₅ O ₃ N ₂ Cl ₃	317.9366	\checkmark			
$C_{13}H_{16}O_{3}N_{2}Cl_{2}$	318.0538		√		
C ₁₈ H ₂₃ ON ₂ Cl	318.1499		√		
C ₁₁ H ₂₀ O ₃ NCl ₃	319.0509		√		
C ₁₂ H ₂₄ O ₂ NCl ₃	319.0873		 √		
C ₁₃ H ₁₅ ON ₂ Cl ₃	320.0250		√		
C ₁₀ H ₁₉ O ₃ N ₂ Cl ₃	320.0461			\checkmark	
C ₁₁ H ₂₃ O ₂ N ₂ Cl ₃	320.0825			√	
C ₁₈ H ₂₅ ON ₂ Cl	320.1655		\checkmark		

DBP formula	Theo. MW		Presence(s) of DBPs in this study			
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	
$C_{12}H_{16}O_4N_2Cl_2$	322.0487				√	
$C_{10}H_{21}O_3N_2Cl_3$	322.0618			\checkmark		
$C_{12}H_{19}O_6N_2Cl$	322.0932				√	
C ₁₇ H ₂₃ O ₂ N ₂ Cl	322.1448		\checkmark			
C ₁₈ H ₂₇ ON ₂ Cl	322.1812		\checkmark			
$C_{12}H_{18}O_4N_2Cl_2$	324.0644			\checkmark		
C ₁₇ H ₂₅ O ₂ N ₂ Cl	324.1605		\checkmark			
C ₁₃ H ₂₄ O ₆ NCl	325.1292				√	
$C_{12}H_{17}O_2N_2Cl_3$	326.0356	\checkmark				
$C_{13}H_{24}O_3N_2Cl_2$	326.1164			\checkmark		
$C_{17}H_{13}O_3N_2Cl$	328.0615			\checkmark		
$C_{16}H_{22}ON_2Cl_2$	328.1109		\checkmark			
C ₁₆ H ₂₅ O ₃ N ₂ Cl	328.1554		\checkmark			
C ₁₆ H ₁₁ O ₄ N ₂ Cl	330.0407				√	
C ₁₇ H ₁₅ O ₃ N ₂ Cl	330.0771			\checkmark		
C ₁₀ H ₁₉ O ₈ N ₂ Cl	330.0830		\checkmark			
C ₁₆ H ₂₄ ON ₂ Cl ₂	330.1266		\checkmark			
C ₁₉ H ₂₃ ON ₂ Cl	330.1499			\checkmark		
C ₁₂ H ₂₀ O ₃ NCl ₃	331.0509		\checkmark			
$C_{10}H_{15}O_4N_2Cl_3$	332.0097			\checkmark		
$C_{17}H_{17}O_3N_2Cl$	332.0928			\checkmark		
C ₁₉ H ₂₅ ON ₂ Cl	332.1655		\checkmark			
$C_{16}H_{28}ON_2Cl_2$	334.1579		\checkmark			
$C_{16}H_{17}O_4N_2Cl$	336.0877				√	
C ₁₇ H ₂₁ O ₃ N ₂ Cl	336.1241		\checkmark			
$C_{14}H_{25}O_5N_2Cl$	336.1452			\checkmark		
C ₁₅ H ₂₈ O ₅ NCl	337.1656		\checkmark			
C ₁₇ H ₂₃ O ₃ N ₂ Cl	338.1397		\checkmark			
$C_{18}H_{27}O_2N_2Cl$	338.1761		\checkmark			
$C_{15}H_{11}ON_2Cl_3$	339.9937		\checkmark			
$C_{13}H_{19}O_2N_2Cl_3$	340.0512		\checkmark			
C ₁₄ H ₂₃ ON ₂ Cl ₃	340.0876		\checkmark			
$C_{14}H_{26}O_3N_2Cl_2$	340.1320			\checkmark		
C ₁₇ H ₂₅ O ₃ N ₂ Cl	340.1554		\checkmark			
$C_{18}H_{29}O_2N_2Cl$	340.1918		\checkmark			
C ₁₂ H ₁₇ O ₃ N ₂ Cl ₃	342.0305		\checkmark			
C ₁₇ H ₂₄ ON ₂ Cl ₂	342.1266		\checkmark			
$C_{14}H_{28}O_3N_2Cl_2$	342.1477	\checkmark				
C ₁₇ H ₂₇ O ₃ N ₂ Cl	342.1710		\checkmark			

DBP formula	Theo. MW		Presence(s) of DBPs in this study			
DDi Iomiuia	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water	
$C_{11}H_{15}O_4N_2Cl_3$	344.0097		\checkmark			
C ₁₈ H ₁₇ O ₃ N ₂ Cl	344.0928			\checkmark		
C ₁₈ H ₃₃ O ₂ N ₂ Cl	344.2231		\checkmark			
C ₁₉ H ₂₀ O ₃ NCl	345.1132			\checkmark		
$C_{14}H_{13}O_2N_2Cl_3$	346.0043				√	
C ₁₈ H ₁₉ O ₃ N ₂ Cl	346.1084		\checkmark			
C ₂₀ H ₂₇ ON ₂ Cl	346.1812		\checkmark			
$C_{12}H_7O_4N_2Cl_3$	347.9471				√	
C ₁₈ H ₂₁ O ₃ N ₂ Cl	348.1241				\checkmark	
$C_{11}H_{21}O_4N_2Cl_3$	350.0567			\checkmark		
C ₁₆ H ₁₅ O ₅ N ₂ Cl	350.0670				\checkmark	
C ₁₇ H ₁₉ O ₄ N ₂ Cl	350.1033				√	
C ₁₈ H ₂₃ O ₃ N ₂ Cl	350.1397		\checkmark			
C ₁₉ H ₂₇ O ₂ N ₂ Cl	350.1761		\checkmark			
C ₁₄ H ₂₂ O ₇ NCl	351.1085				\checkmark	
C ₁₇ H ₂₁ O ₄ N ₂ Cl	352.1190		\checkmark			
C ₁₈ H ₂₅ O ₃ N ₂ Cl	352.1554		\checkmark			
C ₁₉ H ₂₉ O ₂ N ₂ Cl	352.1918		\checkmark			
C ₁₂ H ₁₃ O ₄ N ₂ Cl ₃	353.9941	\checkmark				
C ₁₉ H ₁₅ O ₃ N ₂ Cl	354.0771				\checkmark	
$C_{14}H_{24}O_4N_2Cl_2$	354.1113			\checkmark		
C ₂₀ H ₁₉ O ₂ N ₂ Cl	354.1135			\checkmark		
C ₁₈ H ₂₇ O ₃ N ₂ Cl	354.1710		\checkmark			
C ₂₀ H ₂₁ O ₂ N ₂ Cl	356.1292			\checkmark		
$C_{14}H_{12}O_5N_2Cl_2$	358.0123				\checkmark	
C ₁₈ H ₂₈ ON ₂ Cl ₂	358.1579		\checkmark			
C ₁₈ H ₁₇ O ₄ N ₂ Cl	360.0877			\checkmark		
C ₁₀ H ₃ O ₁₁ N ₂ Cl	361.9425				√	
C ₁₆ H ₁₁ O ₆ N ₂ Cl	362.0306				\checkmark	
$C_{14}H_{16}O_5N_2Cl_2$	362.0436			\checkmark		
C ₁₄ H ₁₉ O ₇ N ₂ Cl	362.0881				√	
C ₁₈ H ₁₉ O ₄ N ₂ Cl	362.1033			\checkmark		
C ₁₈ H ₂₁ O ₄ N ₂ Cl	364.1190		\checkmark			
C ₁₈ H ₂₃ O ₄ N ₂ Cl	366.1346		\checkmark			
C ₁₉ H ₂₇ O ₃ N ₂ Cl	366.1710		\checkmark			
C ₁₅ H ₂₀ O ₃ NCl ₃	367.0509		\checkmark			
$C_{14}H_{22}O_5N_2Cl_2$	368.0906			\checkmark		
C ₁₈ H ₂₅ O ₄ N ₂ Cl	368.1503				√	
C ₁₆ H ₁₆ O ₄ N ₂ Cl ₂	370.0487			\checkmark		

DBP formula	Theo. MW	Presence(s) of DBPs in this study			
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water
$C_{15}H_{15}O_7N_2Cl$	370.0568		\checkmark		
$C_{19}H_{28}ON_2Cl_2$	370.1579		\checkmark		
$C_{18}H_{27}O_4N_2Cl$	370.1659		\checkmark		
$C_{19}H_{17}O_4N_2Cl$	372.0877			\checkmark	
C ₁₆ H ₂₁ O ₆ N ₂ Cl	372.1088		\checkmark		
$C_{18}H_{29}O_4N_2Cl$	372.1816	\checkmark			
$C_{19}H_{19}O_4N_2Cl$	374.1033			\checkmark	
C ₁₂ H ₂₅ O ₉ N ₂ Cl	376.1249		\checkmark		
C ₁₆ H ₁₁ O ₇ N ₂ Cl	378.0255		\checkmark		
C ₂₀ H ₂₇ O ₃ N ₂ Cl	378.1710	\checkmark			
C ₁₇ H ₁₇ O ₆ N ₂ Cl	380.0775				\checkmark
C ₂₀ H ₂₉ O ₃ N ₂ Cl	380.1867		\checkmark		
C ₁₆ H ₂₂ O ₃ NCl ₃	381.0665			\checkmark	
C ₁₁ H ₂₁ O ₆ N ₂ Cl ₃	382.0465			\checkmark	
C ₂₀ H ₁₅ O ₄ N ₂ Cl	382.0720				√
C ₁₉ H ₂₉ O ₄ N ₂ Cl	384.1816		\checkmark		
C ₂₀ H ₁₉ O ₄ N ₂ Cl	386.1033			\checkmark	
C ₁₇ H ₂₃ O ₆ N ₂ Cl	386.1245		\checkmark		
C ₂₁ H ₂₃ O ₃ N ₂ Cl	386.1397			\checkmark	
C ₁₉ H ₃₁ O ₄ N ₂ Cl	386.1972		\checkmark		
C ₁₈ H ₂₉ O ₅ N ₂ Cl	388.1765	\checkmark			
C ₁₂ H ₂₀ O ₁₁ NCl	389.0725				√
C ₁₃ H ₂₄ O ₁₀ NCl	389.1089				√
C ₁₇ H ₁₁ O ₇ N ₂ Cl	390.0255		\checkmark		
C ₁₈ H ₁₅ O ₆ N ₂ Cl	390.0619				√
C ₂₀ H ₂₃ O ₄ N ₂ Cl	390.1346			\checkmark	
C ₁₇ H ₂₇ O ₆ N ₂ Cl	390.1558		\checkmark		
C ₁₄ H ₂₇ O ₄ N ₂ Cl ₃	392.1036	\checkmark	-		
C ₁₃ H ₂₅ O ₈ NCl ₂	393.0957				√
C ₁₇ H ₉ O ₃ N ₂ Cl ₃	393.9679				√
C ₁₅ H ₁₇ O ₄ N ₂ Cl ₃	394.0254	\checkmark			
C ₁₉ H ₂₇ O ₅ N ₂ Cl	398.1609	•	√		
C ₂₀ H ₃₁ O ₄ N ₂ Cl	398.1972		√ √		
C ₁₅ H ₂₆ O ₉ NCl	399.1296		 ✓		
C ₁₈ H ₂₁ O ₂ N ₂ Cl ₃	402.0669		√ √		
C ₁₈ H ₂₇ O ₆ N ₂ Cl	402.1558				√
C ₁₂ H ₂₃ O ₁₁ N ₂ Cl	406.0990		\checkmark		· · ·
C ₁₆ H ₁₉ O ₄ N ₂ Cl ₃	408.0410		· · ·	\checkmark	
$C_{18}H_{19}O_7N_2Cl$	410.0881			v	√

DBP formula	Theo. MW	Presence(s) of DBPs in this study			
	(Da)	RW-Cl ₂	CW-Cl ₂	FW-Cl ₂	Finished water
C ₂₁ H ₃₁ O ₄ N ₂ Cl	410.1972		\checkmark		
C ₂₀ H ₂₉ O ₅ N ₂ Cl	412.1765		\checkmark		
C ₂₀ H ₃₁ O ₅ N ₂ Cl	414.1922		\checkmark		
C ₁₆ H ₃₀ O ₉ NCl	415.1609		\checkmark		
C ₁₈ H ₂₁ O ₃ N ₂ Cl ₃	418.0618		\checkmark		
C ₁₄ H ₂₇ O ₁₀ N ₂ Cl	418.1354		\checkmark		
C ₁₇ H ₁₇ O ₉ N ₂ Cl	428.0623		\checkmark		
C ₁₇ H ₂₇ O ₉ N ₂ Cl	438.1405				\checkmark
C ₂₁ H ₂₇ O ₆ N ₂ Cl	438.1558		\checkmark		
C ₁₈ H ₂₃ O ₇ N ₂ Cl ₃	484.0571		\checkmark		
C ₁₇ H ₂₉ O ₁₃ N ₂ Cl	504.1358			\checkmark	
C ₁₅ H ₁₉ O ₁₁ N ₂ Cl ₃	508.0054	\checkmark			
C ₃₂ H ₃₂ O ₈ NC1	593.1816		\checkmark		
C ₃₅ H ₅₀ O ₁₂ NCl	711.3022			\checkmark	

D	Changes in intensities between two consecutive processes			Formation	
Precursors	RW→CW	CW→FW	FW→Finished water	mechanism	DBPs
C ₉ H ₈ O ₄	Constant	Increased	Constant	ES	C ₉ H ₇ O ₄ Cl
C ₁₂ H ₁₀ O ₃	Disappeared	Newly Formed	Constant	ES	C ₁₂ H ₉ O ₃ Cl
C ₇ H ₁₆ O ₇	Constant	Increased	Constant	ES	C ₇ H ₁₅ O ₇ Cl
C ₁₂ H ₁₂ O ₄	Decreased	Increased	Constant	ES	C ₁₂ H ₁₁ O ₄ Cl
C ₁₃ H ₁₀ O ₅	Decreased	Increased	Constant	ES	C ₁₃ H ₉ O ₅ Cl
C ₁₁ H ₆ O ₇	Increased	Increased	Constant	ES	C ₁₁ H ₅ O ₇ Cl
C ₁₂ H ₁₀ O ₆	Constant	Increased	Constant	ES	C ₁₂ H ₉ O ₆ Cl
C ₈ H ₁₄ O ₉	Newly Formed	Increased	Constant	ES	C ₈ H ₁₃ O ₉ Cl
C ₁₀ H ₁₀ O ₆	Decreased	Increased	Constant	ES	C ₁₀ H ₉ O ₆ Cl
C ₁₃ H ₁₂ O ₆	Decreased	Increased	Constant	ES	C ₁₃ H ₁₁ O ₆ Cl
C ₁₂ H ₁₈ O ₇	Disappeared	Newly Formed	Constant	ES	C ₁₂ H ₁₇ O ₇ Cl
C ₁₈ H ₁₂ O ₃	Disappeared	Newly Formed	Increased	ES	C ₁₈ H ₁₁ O ₃ Cl
C ₁₅ H ₂₄ O ₅	Newly Formed	Disappeared	Newly Formed	ES	C ₁₅ H ₂₃ O ₅ Cl
C ₁₁ H ₁₀ O ₇	Constant	Increased	Constant	ES	$C_{11}H_8O_7Cl_2$
C ₁₂ H ₁₈ O ₈	Disappeared	Newly Formed	Constant	ES	C ₁₂ H ₁₇ O ₈ Cl
C ₁₄ H ₂₄ O ₇	Constant	Constant	Increased	ES	C ₁₄ H ₂₃ O ₇ Cl
C ₁₂ H ₂₆ O ₉	Constant	Decreased	Decreased	ES	C ₁₂ H ₂₅ O ₉ Cl
C ₁₆ H ₃₂ O ₃	Decreased	Increased	Constant	ES	C ₁₆ H ₃₀ O ₃ Cl ₂
C ₁₆ H ₂₄ O ₈	Newly Formed	Disappeared	ND	ES	C ₁₆ H ₂₃ O ₈ Cl
C ₁₉ H ₂₆ O ₆	Newly Formed	Disappeared	ND	ES	C ₁₉ H ₂₅ O ₆ Cl
C ₁₈ H ₃₂ O ₃	Constant	Constant	Constant	ES	C ₁₈ H ₂₉ O ₃ Cl ₃
C ₁₉ H ₂₈ O ₇	Decreased	Increased	Decreased	ES	C ₁₉ H ₂₇ O ₇ Cl
C ₁₂ H ₁₂ O ₇	Decreased	Increased	Increased	ES	C ₁₂ H ₁₁ O ₇ Cl
C ₁₂ H ₁₄ O ₇	Decreased	Increased	Constant	ES	C ₁₂ H ₁₃ O ₇ Cl
C ₁₄ H ₂₂ O ₅	Decreased	Increased	Constant	ES	C ₁₄ H ₂₁ O ₅ Cl
C ₁₁ H ₁₀ O ₆	Decreased	Increased	Constant	ES	C ₁₁ H ₈ O ₆ Cl ₂
C ₁₁ H ₁₂ O ₈	Disappeared	Newly Formed	Constant	ES	C ₁₁ H ₁₁ O ₈ Cl
C ₁₀ H ₁₀ O ₇	Decreased	Constant	Constant	ES	C ₁₀ H ₉ O ₇ Cl
C ₁₃ H ₁₄ O ₇	Decreased	Increased	Constant	ES	C ₁₃ H ₁₃ O ₇ Cl
C ₁₃ H ₂₆ O ₂	Disappeared	Newly Formed	Constant	ES	C ₁₃ H ₂₃ O ₂ Cl ₃
C ₁₃ H ₁₆ O ₇	Decreased	Increased	Constant	ES	C ₁₃ H ₁₅ O ₇ Cl
C ₁₂ H ₁₆ O ₈	Decreased	Increased	Constant	ES	C ₁₂ H ₁₅ O ₈ Cl
C ₁₄ H ₂₄ O ₂	Decreased	Increased	Constant	ES	C ₁₄ H ₂₃ O ₂ Cl
C ₁₂ H ₁₀ O ₉	ND	Newly Formed	Increased	ES	C ₁₂ H ₉ O ₉ Cl
C ₁₂ H ₂₆ O ₈	Constant	Constant	Constant	ES	C ₁₂ H ₂₅ O ₈ Cl
C ₁₄ H ₁₆ O ₈	Decreased	Increased	Constant	ES	C ₁₄ H ₁₅ O ₈ Cl
C ₁₅ H ₂₀ O ₇	Decreased	Increased	Constant	ES	C ₁₅ H ₁₉ O ₇ Cl

1 Table S6 Complete list of CHO precursors and their fates during water treatment processes

D	Changes in intensities between two consecutive processes			Formation	DBPs	
Precursors	RW→CW	CW→FW			DBPS	
C ₁₅ H ₁₄ O ₈	Decreased	Increased	Constant	ES	C ₁₅ H ₁₃ O ₈ Cl	
C ₁₇ H ₂₆ O ₆	Decreased	Constant	Constant	ES	C ₁₇ H ₂₅ O ₆ Cl	
C ₁₅ H ₂₀ O ₈	Decreased	Constant	Constant	ES	C ₁₅ H ₁₉ O ₈ Cl	
C ₁₄ H ₁₆ O ₇	Decreased	Increased	Constant	ES	C ₁₄ H ₁₄ O ₇ Cl ₂	
C ₁₇ H ₁₈ O ₇	Disappeared	Newly Formed	Constant	ES	C ₁₇ H ₁₇ O ₇ Cl	
C ₂₀ H ₃₀ O ₆	Decreased	Increased	Constant	ES	C ₂₀ H ₂₉ O ₆ Cl	
C ₁₇ H ₂₂ O ₇	Decreased	Constant	Constant	ES	C ₁₇ H ₂₀ O ₇ Cl ₂	
C ₁₆ H ₁₈ O ₉	Disappeared	Newly Formed	Constant	ES	C ₁₆ H ₁₆ O ₉ Cl ₂	
C ₁₈ H ₂₄ O ₁₀	Decreased	Decreased	Constant	ES	C ₁₈ H ₂₃ O ₁₀ Cl	
C ₁₆ H ₂₂ O ₅	Disappeared	ND	Newly Formed	ES	C ₁₆ H ₂₁ O ₅ Cl	
C ₁₅ H ₂₂ O ₄	Decreased	Constant	Constant	ES	C ₁₅ H ₂₁ O ₄ Cl	
C ₁₂ H ₁₄ O ₉	Decreased	Constant	Constant	ES	C ₁₂ H ₁₃ O ₉ Cl	
C ₁₄ H ₂₀ O ₄	Decreased	Constant	Constant	ES	C ₁₄ H ₁₉ O ₄ Cl	
C ₁₇ H ₂₂ O ₆	Decreased	Constant	Decreased	ES	C ₁₇ H ₂₁ O ₆ Cl	
C ₁₂ H ₁₆ O ₇	Decreased	Increased	Increased	ES	C ₁₂ H ₁₄ O ₇ Cl ₂	
C ₁₆ H ₂₀ O ₆	Decreased	Constant	Increased	ES	C ₁₆ H ₁₉ O ₆ Cl	
C ₁₇ H ₂₈ O ₅	Decreased	Increased	Constant	ES	C ₁₇ H ₂₇ O ₅ Cl	
C ₉ H ₆ O ₃	Constant	Increased	Constant	AR	C ₉ H ₇ O ₄ Cl	
C ₁₂ H ₁₀ O ₃	Decreased	Increased	Constant	AR	C ₁₂ H ₁₁ O ₄ Cl	
C ₉ H ₄ O ₆	Constant	Increased	Constant	AR	C ₉ H ₅ O ₇ Cl	
C ₁₂ H ₈ O ₅	Constant	Increased	Constant	AR	C ₁₂ H ₉ O ₆ Cl	
C ₁₃ H ₁₀ O ₅	Decreased	Increased	Constant	AR	C ₁₃ H ₁₁ O ₆ Cl	
C ₁₂ H ₁₆ O ₆	Disappeared	Newly Formed	Constant	AR	C ₁₂ H ₁₇ O ₇ Cl	
C ₁₅ H ₂₂ O ₄	Newly Formed	Disappeared	Newly Formed	AR	C ₁₅ H ₂₃ O ₅ Cl	
C ₁₂ H ₁₆ O ₇	Disappeared	Newly Formed	Constant	AR	C ₁₂ H ₁₇ O ₈ Cl	
C ₁₄ H ₂₀ O ₆	Newly Formed	Disappeared	Newly Formed	AR	C ₁₄ H ₂₁ O ₇ Cl	
C ₁₄ H ₂₂ O ₆	Constant	Constant	Increased	AR	C ₁₄ H ₂₃ O ₇ Cl	
C ₁₇ H ₂₄ O ₅	Decreased	Constant	Constant	AR	C ₁₇ H ₂₅ O ₆ Cl	
C ₁₈ H ₂₈ O ₇	Newly Formed	Disappeared	ND	AR	C ₁₈ H ₂₉ O ₈ Cl	
C ₁₀ H ₈ O ₅	Decreased	Increased	Constant	AR	C ₁₀ H ₉ O ₆ Cl	
C ₁₁ H ₁₈ O ₅	Constant	Disappeared	ND	AR	C ₁₁ H ₁₉ O ₆ Cl	
C ₁₂ H ₁₀ O ₅	Decreased	Increased	Constant	AR	C ₁₂ H ₁₁ O ₆ Cl	
C ₁₁ H ₁₀ O ₆	Decreased	Increased	Constant	AR	C ₁₁ H ₁₁ O ₇ Cl	
C ₁₆ H ₁₆ O ₂	Decreased	Increased	Disappeared	AR	C ₁₆ H ₁₇ O ₃ Cl	
C ₁₂ H ₁₀ O ₆	Decreased	Increased	Increased	AR	C ₁₂ H ₁₁ O ₇ Cl	
C ₁₂ H ₁₂ O ₆	Decreased	Increased	Constant	AR	C ₁₂ H ₁₃ O ₇ Cl	
C ₁₄ H ₂₀ O ₄	Decreased	Increased	Constant	AR	C ₁₄ H ₂₁ O ₅ Cl	
C ₁₁ H ₁₀ O ₇	Disappeared	Newly Formed	Constant	AR	C ₁₁ H ₁₁ O ₈ Cl	
C ₁₀ H ₆ O ₅	Constant	Increased	Constant	AR	C ₁₀ H ₇ O ₆ Cl	

D	Changes in intensities between two consecutive processes			Formation	DBPs
Precursors	RW→CW	CW→FW	FW→Finished water	r→Finished water mechanism	
C ₁₂ H ₂₂ O ₆	Decreased	Increased	Constant	AR	C ₁₂ H ₂₃ O ₇ Cl
C ₁₃ H ₁₂ O ₆	Decreased	Increased	Constant	AR	C ₁₃ H ₁₃ O ₇ Cl
C ₁₃ H ₁₄ O ₆	Decreased	Increased	Constant	AR	C ₁₃ H ₁₅ O ₇ Cl
C ₁₂ H ₁₄ O ₇	Decreased	Increased	Constant	AR	C ₁₂ H ₁₅ O ₈ Cl
C ₁₄ H ₁₄ O ₇	Decreased	Increased	Constant	AR	C ₁₄ H ₁₅ O ₈ Cl
C ₁₅ H ₁₈ O ₆	Decreased	Increased	Constant	AR	C ₁₅ H ₁₉ O ₇ Cl
$C_{12}H_8O_6$	Constant	Increased	Constant	AR	$C_{12}H_{10}O_8Cl_2$
C ₁₃ H ₁₂ O ₅	Decreased	Increased	Constant	AR	C ₁₃ H ₁₄ O ₇ Cl ₂
C ₁₅ H ₁₈ O ₇	Decreased	Constant	Constant	AR	C ₁₅ H ₁₉ O ₈ Cl
C ₁₇ H ₁₆ O ₆	Disappeared	Newly Formed	Constant	AR	C ₁₇ H ₁₇ O ₇ Cl
C ₂₀ H ₂₈ O ₅	Decreased	Increased	Constant	AR	C ₂₀ H ₂₉ O ₆ Cl
C ₁₆ H ₁₄ O ₇	Disappeared	Newly Formed	Constant	AR	C ₁₆ H ₁₆ O ₉ Cl ₂
C ₁₈ H ₂₂ O ₉	Decreased	Decreased	Constant	AR	C ₁₈ H ₂₃ O ₁₀ Cl
C ₁₂ H ₁₂ O ₈	Decreased	Constant	Constant	AR	C ₁₂ H ₁₃ O ₉ Cl
C ₁₁ H ₁₂ O ₉	ND	Newly Formed	Constant	AR	C ₁₁ H ₁₃ O ₁₀ Cl
C ₁₈ H ₂₄ O ₃	Decreased	Constant	Decreased	AR	C ₁₈ H ₂₅ O ₄ Cl
C ₁₂ H ₁₂ O ₅	Decreased	Increased	Constant	AR	C ₁₂ H ₁₃ O ₆ Cl
C ₁₆ H ₁₈ O ₅	Decreased	Constant	Increased	AR	C ₁₆ H ₁₉ O ₆ Cl

2 *ES – electrophilic substitution, AR – addition reaction, ND – not detected

D	Changes in int	000			
Precursors	RW→CW	CW→FW	FW→Finished water	DBPs	
C ₆ H ₁₀ ON ₂	Decreased	Increased	Increased	C ₆ H ₇ ON ₂ Cl ₃	
C ₈ H ₇ O ₄ N	Disappeared	Newly Formed	Constant	C ₈ H ₅ O ₄ NCl ₂	
$C_9H_{14}O_3N_2$	Decreased	Increased	Constant	C ₉ H ₁₃ O ₃ N ₂ Cl	
$C_{12}H_{12}O_2N_2$	Constant	Constant	Decreased	C ₁₂ H ₁₁ O ₂ N ₂ Cl	
$C_{11}H_8O_3N_2$	Decreased	Increased	Constant	C ₁₁ H ₇ O ₃ N ₂ Cl	
$C_{12}H_{16}O_4N_2$	Disappeared	Newly Formed	Decreased	C ₁₂ H ₁₃ O ₄ N ₂ Cl ₃	
$C_{19}H_{26}O_3N_2$	Decreased	Constant	Constant	C ₁₉ H ₂₅ O ₃ N ₂ Cl	
$C_{16}H_{22}O_2N_2$	Decreased	Constant	Constant	C ₁₆ H ₂₁ O ₂ N ₂ Cl	
C ₁₅ H ₂₂ O ₃ N ₂	Decreased	Constant	Constant	C ₁₅ H ₂₁ O ₃ N ₂ Cl	
$C_{21}H_{20}O_3N_2$	Decreased	Constant	Constant	C ₂₁ H ₁₈ O ₃ N ₂ Cl ₂	
C ₂₂ H ₂₂ O ₃ N ₂	Disappeared	ND	Newly Formed	C ₂₂ H ₂₁ O ₃ N ₂ Cl	
C ₁₅ H ₃₂ O ₁₁ N ₂	Constant	Disappeared	Newly Formed	C ₁₅ H ₃₁ O ₁₁ N ₂ Cl	
C ₂₁ H ₂₇ O ₁₀ N	Decreased	Increased	Constant	C ₂₁ H ₂₆ O ₁₀ NCl	
$C_{16}H_{22}O_2N_2$	Decreased	Constant	Constant	C ₁₆ H ₂₁ O ₂ N ₂ Cl	
$C_{10}H_{20}O_8N_2$	Constant	Constant	Constant	C ₁₀ H ₁₉ O ₈ N ₂ Cl	
C ₁₂ H ₂₃ O ₃ N	Decreased	Constant	Constant	C ₁₂ H ₂₀ O ₃ NCl ₃	
C ₁₇ H ₂₂ O ₃ N ₂	Decreased	Constant	Constant	C ₁₇ H ₂₁ O ₃ N ₂ Cl	
C ₁₇ H ₂₂ O ₄ N ₂	Decreased	Constant	Constant	C ₁₇ H ₂₁ O ₄ N ₂ Cl	
$C_{19}H_{30}O_2N_2$	Newly Formed	Disappeared	ND	C ₁₉ H ₂₉ O ₂ N ₂ Cl	
$C_{19}H_{26}O_3N_2$	Decreased	Constant	Constant	C ₁₉ H ₂₅ O ₃ N ₂ Cl	
C ₁₆ H ₂₂ O ₆ N ₂	Decreased	Increased	Increased	C ₁₆ H ₂₁ O ₆ N ₂ Cl	
$C_{16}H_{22}O_2N_2$	Decreased	Constant	Constant	C ₁₆ H ₂₁ O ₂ N ₂ Cl	
$C_{16}H_{12}O_7N_2$	Decreased	Disappeared	Newly Formed	C ₁₆ H ₁₁ O ₇ N ₂ Cl	
$C_{15}H_{22}O_{3}N_{2}$	Decreased	Constant	Constant	C ₁₅ H ₂₁ O ₃ N ₂ Cl	
$C_{19}H_{30}O_2N_2$	Newly Formed	Disappeared	ND	C ₁₉ H ₂₉ O ₂ N ₂ Cl	
$C_{17}H_{12}O_7N_2$	Decreased	Constant	Constant	C ₁₇ H ₁₁ O ₇ N ₂ Cl	
$C_{21}H_{20}O_3N_2$	Decreased	Constant	Constant	$C_{21}H_{18}O_3N_2Cl_2$	
$C_{17}H_{18}O_9N_2$	Newly Formed	Disappeared	ND	C ₁₇ H ₁₇ O ₉ N ₂ Cl	
$C_{21}H_{28}O_6N_2$	Decreased	Constant	Constant	C ₂₁ H ₂₇ O ₆ N ₂ Cl	
C ₁₅ H ₃₂ O ₁₁ N ₂	Constant	Disappeared	Newly Formed	C ₁₅ H ₃₁ O ₁₁ N ₂ Cl	
C ₂₁ H ₂₇ O ₁₀ N	Decreased	Increased	Constant	C ₂₁ H ₂₆ O ₁₀ NCl	
$C_{17}H_{18}O_3N_2$	Constant	Increased	Increased	C ₁₇ H ₁₇ O ₃ N ₂ Cl	
$C_{16}H_{18}O_4N_2$	ND	Newly Formed	Constant	C ₁₆ H ₁₇ O ₄ N ₂ Cl	
$C_{15}H_{22}O_3N_2$	Decreased	Constant	Constant	C ₁₅ H ₂₁ O ₃ N ₂ Cl	
$C_{21}H_{24}O_3N_2$	Decreased	Increased	Increased	C ₂₁ H ₂₃ O ₃ N ₂ Cl	
$C_{17}H_{10}O_8N_2$	Disappeared	Newly Formed	Increased	C ₁₇ H ₉ O ₈ N ₂ Cl	
C ₂₁ H ₂₇ O ₁₀ N	Decreased	Increased	Constant	C ₂₁ H ₂₆ O ₁₀ NCl	
$C_{12}H_{10}O_4N_2$	Decreased	Increased	Constant	C ₁₂ H ₉ O ₄ N ₂ Cl	

Precursors	Changes in intensities between two consecutive processes			DBPs
	RW→CW	CW→FW	FW→Finished water	DBFS
$C_{17}H_{20}O_4N_2$	Decreased	Increased	Constant	$C_{17}H_{19}O_4N_2Cl$
C ₁₄ H ₂₃ O ₇ N	ND	Newly Formed	Increased	$C_{14}H_{22}O_7NCl$

*ND – not detected