Efficient Visible-Light-Driven Photocatalysis: Simultaneous Degradation of Multiple Pollutants with Bismuth Oxyhalide Solid Solutions

Helena Pérez del Pulgar^a, Josefa Ortiz-Bustos^a, Santiago Gómez-Ruiz^{a,b}, Isabel del Hierro^{a,b*}, Yolanda Pérez^{a,c*}

^a COMET-NANO group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles (Madrid), Spain.

^b Instituto de Investigación de Tecnologías para la Sostenibilidad. Universidad Rey Juan Carlos.

^c Advanced Porous Materials Unit, IMDEA Energy, Av. Ramón de la Sagra3, 28935 Móstoles, Madrid, Spain

E-mail: yolanda.cortes@urjc.es ; isabel.hierro@urjc.es

Figure S1 a) XRD spectra of $BiOCI_{0.9}I_{0.1}$ and BiOCI samples and b) XRD spectra of $BiOBr_{0.9}I_{0.1}$ and BiOBr samples, with the standard diffraction pattern of BiOI (JCPDS 010-0445).

Figure S2. FT-IR spectra for a) bismuth oxychloride-based samples and b) bismuth oxybromide-based samples c) Zoom in the range 1200-1500 1366 cm^{.1}.

Figure S3. N_2 adsorption-desorption isotherms of the BiOBr_{0.9}I_{0.1} and BiOCI_{0.9}I_{0.1} samples (a) and BiOCI and BiOBr (b).

Figure S4. TEM images of $\text{BiOCI}_{0.9}\text{I}_{0.1}$ (a) and $\text{BiOBr}_{0.9}\text{I}_{0.1}$ (b) and (c)

Figure S5. SEM/EDS images of the $BiOCI_{0.9}I_{0.1}$ sample. The coloured spots are the different elements in the material: yellow (I), purple (Bi), blue (O) and brown (CI)

Bi Mα1

Figure S6. SEM/EDS images of the $BiOBr_{0.9}I_{0.1}$ sample. The coloured spots are the different elements in the material: yellow (I), purple (Bi), blue (O) and red (Br)

Fig. S7. Pseudo first-order kinetics of a) CIP and b) MP using bismuth oxyhalide solid solutions

Photocatalyst	Contaminant	<i>k</i> (min ⁻¹)	C (ppm)	Removal (%)	Light source	Time (min)	Reference
BiOCl _{0.9} l _{0.1}	MP	0.037	10	90	Vis (300W Xe lamp)	60	This work
Ag/AgBr@m-WO ₃	MP	0.00981	10	80	Vis (450 W Xe arc lamp)	180	1
Fe ₂ O ₃ /BiVO ₃ /biochar assembly	MP	0.020	5	95.6	Sunlight	120	2
${\sf Bi_4O_5Br_2}$	MP	0.00356	10	24.4	Vis (1000 W Xe lamp)	60	3
I _{1.0} -Bi ₄ O ₅ Br ₂	MP	0.0368	10	90	Vis (1000 W Xe lamp)	60	3
BiOBr _{0.9} I _{0.1}	CIP	0.035	15	91.6	Vis (300W Xe lamp)	60	This work
3%BiVO₄/TiO₂	CIP	0.0215	10	100	Vis (300W Xe lamp)	120	4
BiOBr/Bi ₄ O ₅ Br ₂	CIP	0.015	10	91	Vis (500W Xe lamp)	150	5
CuS/BiVO ₄	CIP	0.0215	10	90	Vis (300W Xe lamp)	90	6
BiVO ₄ /Ag/MnO ₂	CIP	0.0275	10	93.6	Vis (300W Xe lamp)	100	7
Ag-BiVO ₄	CIP	0.02814	10	98.2	Solar light	120	8

Table S1. Comparison of single contaminant removal efficiencies

Figure S8. PL spectra of a) BiOBr-based samples upon excitation at 315 nm (cut wavelength 370 nm) and b) BiOCI-based samples upon excitation at 266 nm (cut wavelength 290 nm)

Figure S9. XPS survey spectra of bismuth oxychloride-based samples

Figure S10. Pseudo first-order kinetics of a) CIP and b) MP degradation using $BiOCI_{0.9}I_{0.1}$ in a single-, binary- (CIP/MP) and ternary-contaminant system (CIP/MP/RhB).

Figure S11. Electrochemical impedance measurements, Nyquist plots of $BiOX_{0.9}I_{0.1}$ carbon paste electrodes

Table S2. Values obtained by the Randles model circuit fitting of EIS spectra of $\text{BiOX}_{0.9}\text{I}_{0.1}.$

Material	$R_{S}(k\Omega)$	R_{p} (k Ω)	CPE (µMho*s^N)
BiOCI _{0.9} I _{0.1}	4.89	26.2	6.86
BiOBr _{0.9} I _{0.1}	27.0	35.3	96.4

Fig. S12. Scavenger experiments for MP degradation using $BiOCI_{0.9}I_{0.1} a$) singlecontaminant (final time = 80 min) and b) ternary-contaminant system (final time = 40 min). c) Scavenger experiments for CIP degradation using $BiOCI_{0.9}I_{0.1}$ in the ternary-contaminant system (final time = 40 min).

Fig. S13. XPS spectrum of the valence band potential (E_{VB-XPS}) for BiOCl_{0.9}I_{0.1}

Fig. S14. CV of RhB, CIP and MP in PBS at pH 7.4 using Pt as both the working and counter electrodes and Ag/AgCl/KCl 3M as a reference electrode.

Figure S15. HPLC chromatogram of the CIP degradation in the single system at 272 nm using $BiOCI_{0.9}I_{0.1}$.

Fig. S16. LC-MS spectra of the CIP degradation in the single system using $BiOCI_{0.9}I_{0.1}$.

Fig. S17. HPLC chromatogram of the CIP degradation in the binary-contaminant system (CIP/MP) at 272 nm using $BiOCI_{0.9}I_{0.1}$.

Fig. S18. LC-MS spectra of the CIP degradation in the binary-contaminant system (CIP/MP) using $\text{BiOCl}_{0.9}\text{I}_{0.1}$

Fig. S19. HPLC chromatogram of the CIP degradation in the ternary-contaminant system (CIP/MP/RhB) at 272 nm using $BiOCl_{0.9}I_{0.1}$.

Fig. S20. LC-MS spectra of the CIP photodegradation in the ternary-contaminant system (CIP/MP/RhB) using $BiOCI_{0.9}I_{0.1}$.

Molecules	MS/MZ values	Molecular	Fish (LC	5 ₅₀) (mg/L)	Daphnid (LC ₅₀) (mg/L)	
		formula	Predicted toxicity	Toxic/non- toxic*	Predicted toxicity	Toxic/non- toxic*
CIP	331	C ₁₇ H ₁₈ FN ₃ O ₃	0.2	Very toxic	N/A	
CIP-2	305	$C_{15}H_{16}FN_3O_3$	0.1	Very toxic	11.98	Harmful
CIP-3	262	$C_{13}H_{11}FN_2O_3$	0.2	Very toxic	23.5	Harmful
CIP-4	216	$C_{12}H_{12}N_2O_2$	2.9	Toxic	21.75	Harmful
CIP-5	200	$C_{12}H_{12}N_2O$	0.4	Very toxic	8.38	Toxic
CIP-6	185	$C_{12}H_{11}NO$	2.5	Toxic	4.17	Toxic
CIP-7	131	C ₉ H ₉ N	24.3	Harmful	95.75	Harmful
CIP-8	253	$C_{11}H_{11}NO_6$	36.11	Harmful	472.94	Not harmful
CIP-9	225	$C_{10}H_{11}NO5$	45.72	Harmful	568.53	Not harmful
CIP-10	158	$C_6H_6O_5$	118.95	Not harmful	433.57	Not harmful

Table S3. Predicted toxicity of the CIP molecule and their degradation intermediates

* Standard toxicity range – Very Toxic - LC_{50} < 1; Toxic – 1 < LC_{50} < 10; Harmful – 10 < LC_{50} < 100; Not Harmful LC_{50} > 100.

Figure S21. Recycling of $BiOCI_{0.9}I_{0.1}$ for MP degradation.

Fig S22. PXRD patters of fresh $\text{BiOCI}_{0.9}\text{I}_{0.1}$ material and after 4 cycles of MP photodegradation

Figure S23. Recycling of $BiOCI_{0.9}I_{0.1}$ in the ternary-contaminant system (CIP/MP/RhB) (final time = 40 min)

Fig S24. PXRD patters of $BiOCI_{0.9}I_{0.1}$ before and after 4 cycles in the ternary-contaminant system (CIP/MP/RhB).

References

- 1. Suliman, M. A.; Gondal, M. A.; Dastageer, M. A.; Chuah, G.; Basheer, C., *Photochem. Photobiol.* 2019, **95**, 1485-1494.
- 2. Kumar, A.; Shalini; Sharma, G.; Naushad, M.; Kumar, A.; Kalia, S.; Guo, C.; Mola, G. T., *J. Photochem. Photobiol. A.* 2017, **337**, 118-131.
- 3. Xiao, X.; Lu, M.; Nan, J.; Zuo, X.; Zhang, W.; Liu, S.; Wang, S., Appl. Catal., B, 2017, 218, 398-408.
- 4. Tashkandi, N. Y.; Albukhari, S. M.; Ismail, A. A., Environ. Sci. Pollut. Res. 2022, 29, 78472-78482.
- 5. Su, X.; Wu, D., Mat. Sci. Semicond. Process. 2018, 80, 123-130.
- Lai, C.; Zhang, M.; Li, B.; Huang, D.; Zeng, G.; Qin, L.; Liu, X.; Yi, H.; Cheng, M.; Li, L.; Chen, Z.; Chen, L., Chem. Eng. J. 2019, 358, 891-902.
- 7. Qin, T.; Wei, J.; Zhou, C.; Zeng, X.; Zhou, J.; Li, Y., Sep. Purif. Technol. 2023, 317, 123793.
- 8. Abid, M. Z.; Ilyas, A.; Rafiq, K.; Rauf, A.; Nadeem, M. A.; Waseem, A.; Hussain, E., *Environ. Sci. Water. Res. Technol.* 2023, **9**, 2238-2252.