Carbon flows and biochar stability during co-pyrolysis of human faeces with wood biomass

M.E. Koulouri* , M. Qiu, M.R. Templeton, G.D. Fowler

Department of Civil and Environmental Engineering, Imperial College London, UK, SW7 2AZ Keywords: human excreta, faecal sludge, carbon sequestration, carbon storage, container-based sanitation *Corresponding author email: maria.koulouri17@imperial.ac.uk

Supplementary Information

1. Lab-scale pyrolysis rotary furnace

Figure S1: Experimental pyrolysis set up (Roger Perry Laboratory, Imperial College London).

2. Thermogravimetric analysis of HF, HF50 and WB

The thermal decomposition behaviour of samples HF, HF50 and WB is depicted in the thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG) curves shown in **[Figure](#page-1-0) [S2](#page-1-0)**. For all samples a first weight loss peak is observed at around 80 $^{\circ}$ C and completed by 150 $^{\circ}$ C, due to drying and dehydration reactions. The maximum rate of decomposition is noticed at 310 °C, 335 °C and 345 °C for HF, HF50 and WB respectively. The earlier peak weight loss rate for faeces compared to wood can be attributed to the decomposition of protein¹. Main pyrolysis reactions are complete by 500-550 $^{\circ}$ C for HF, HF50 and 450-500 $^{\circ}$ C for WB. A distinct shoulder peak is observed for HF at 400-500 $\rm{°C}$ which has also been observed for previous studies² and is attributed to the decomposition of oil and grease³. Notably, this shoulder peak is not observed for WB, which shows a distinct single peak associated with lignin and cellulose/hemicellulose decomposition. Further weight loss is observed after 700 \degree C due to continued carbonisation, particularly for HF which show a weight loss peak at 850 \degree C.

Figure S2: TGA and DTG curves for human faeces (HF), wood biomass (WB) and mixed HF:WB 50:50 (HF50).

3. FTIR spectra for biochar samples B-HF, B-HF75, B-HF50, B-HF25, B-WB

The Fourier Transform Infrared Spectroscopy (FTIR) spectra for samples B-HF, B-HF75, B-HF50, B-HF25 and B-WB are shown in **Figure S3**. The peaks at ~1600-1500 cm⁻¹ associated with C=C stretching were stronger for samples containing more WB and are indicative of lignin and aromatic carbon⁴. Peaks in the 900-700 cm⁻¹ region (C-H bending), associated with mono-, polycyclic and substituted aromatic compounds, were also stronger for the biochars high in WB content, suggesting the enhanced stability of these biochars⁵. On the contrary, strong peaks at $1040-1020$ cm⁻¹ and 550 cm⁻¹ which have been associated with carbohydrates and phosphates, were more intense for the biochars containing more HF and almost eliminated for B-HF25^{3,6}. The presence of carbonates was also confirmed by the strong peaks at \sim 1030 cm⁻¹ as well as peaks at 870 cm⁻¹ and vibrations at 1500-1300 cm^{-1 7}. Bands between wavenumbers 4000-2000 cm⁻¹ showing C-H and O-H stretching regions are not shown, due to the limited differences observed between samples and the signal noise due to the presence of moisture.

Figure S3: Fourier-transform infrared spectroscopy (FTIR) spectra for biochars B-HF, B-HF75, B-HF50, B-HF25 and B-WB produced at 550°C.

Figure S4: Biochar yield for B-HF, B-HF75, B-HF50, B-HF25 and B-WB produced at 450°C, 550°C, 650°C.

5. Statistical analysis results

Table S1: p-values of one-way ANOVA for differences in feedstock C and proximate analysis results, with changes in HF:WB blending ratio (HF, HF75, HF50, HF25, WB) (**bold** for significant differences p<0.05).

Table S2: p-values of two-way ANOVA for differences in biochar yield, proximate analysis and dissolved organic carbon (DOC) results, with changes in pyrolysis temperature (450, 550, 650 °C) and HF:WB ratio (B-HF, B-HF75, B-HF50, B-HF25, B-WB) (**bold** for significant differences p<0.05).

Table S3: p-values of one-way ANOVA for differences in biochar stability (H_2O_2) oxidation, R_{50} recalcitrance index) and carbon retention, with changes in HF:WB blending ratio (B-HF, B-HF75, B-HF50, B-HF25, B-WB) (**bold** for significant differences p<0.05).

Table S4: Two-way ANOVA results for differences in carbon flows to the biochar fraction, with changes in wood addition (HF, HF50, WB) and retention time (0.5, 2 h).

Table S5: Two-way ANOVA results for differences in carbon flows to the biochar fraction, with changes in wood addition (HF, HF50, WB) and N_2 gas flow rate (0.5, 1.5 L/min).

Table S6: Two-way ANOVA results for differences in carbon flows to the bio-oil fraction, with changes in wood addition (HF, HF50, WB) and retention time (0.5, 2 h).

Table S7: Two-way ANOVA results for differences in carbon flows to the bio-oil fraction, with changes in wood addition (HF, HF50, WB) and N_2 gas flow rate (0.5, 1.5 L/min).

Table S8: Two-way ANOVA results for differences in carbon flows to the non-condensable gases (NCG) fraction, with changes in wood addition (HF, HF50, WB) and retention time (0.5, 2 h).

Table S9: Two-way ANOVA results for differences in carbon flows to the non-condensable gases (NCG) fraction, with changes in wood addition (HF, HF50, WB) and N_2 gas flow rate (0.5, 1.5 L/min).

References

- 1 M. E. Koulouri, M. R. Templeton and G. D. Fowler, Source separation of human excreta: Effect on resource recovery via pyrolysis, *J. Environ. Manage.*, 2023, **338**, 117782.
- 2T. Somorin, A. Parker, E. McAdam, L. Williams, S. Tyrrel, A. Kolios and Y. Jiang, Pyrolysis characteristics and kinetics of human faeces, simulant faeces and wood biomass by thermogravimetry–gas chromatography–mass spectrometry methods, *Energy Reports*, 2020, **6**, 3230- 3239.
- 3B. C. Krueger, G. D. Fowler, M. R. Templeton and S. Septien, Faecal sludge pyrolysis: Understanding the relationships between organic composition and thermal decomposition, *J. Environ. Manage.*, 2021, **298**, 113456.
- 4R. Janu, V. Mrlik, D. Ribitsch, J. Hofman, P. Sedláček, L. Bielská and G. Soja, Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature, *Carbon Resour. Convers.*, 2021, **4**, 36–46.
- 5 K. Sahoo, A. Kumar and J. Chakraborty, A comparative study on valuable products: bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues, *Journal of Material Cycles and Waste Management*, 2021, **23**, 186-204.
- 6W. Jastrzębski, M. Sitarz, M. Rokita and K. Bułat, Infrared spectroscopy of different phosphates structures, *Spectrochim. Acta. A. Mol. Biomol. Spectrosc.*, 2011, **79**, 722–727.
- 7 F. B. Reig, J. V. G. Adelantado and M. C. M. Moya Moreno, FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples, *Talanta*, 2002, **58**, 811–821.