Electronic Supplementary Information

Table S1. Physical and chemical properties of oxytenacyclin	Table	S1.	Physical	and	chemical	properties	ofox	ytetracyclin
---	-------	-----	----------	-----	----------	------------	------	--------------

Antibiotic	Molecular	Chemical structure	Molecular	λ_{max}	Water	pKa	Existing
	formular		weight	(nm)	solubility		
			(g/mol)		(mg/L)		
Oxytetracycline	C ₂₂ H ₂₄ N ₂ O ₉	H ₃ C、,CH ₃ H0 CH-OH N	460.4	276 and	200	pKa ₁ =3.37	OTC ⁺ , OTC ^{zwitterion}
(OTC)		ОН		354 nm		pKa ₂ =7.49	OTC ⁻ , OTC ²⁻
		OH O OH O O				pKa ₂ =9.88	

Catalyst	BET surface area (m²/g) ^(a)	Pore volume (cm ³ /g) ^(b)	Pore size (nm) ^(c)
Natural clinoptilolite	36.21	0.097	12.18
Activated	75 76	0 105	11.62
clinoptilolite	75.70	0.105	11.02
g-C ₃ N ₄	34.41	0.127	15.83
Bi ₂ MoO ₆	37.14	0.169	16.21
CNBC30	48.55	0.130	11.55

Table S2. The pore and surface characterization of different samples

^(a) The specific surface area was calculated by BET method

^(b) The pore volume was obtained from the BJH desorption cumulative volume of pores between 1.70 nm and 300.00 nm width

^(c) The BJH Desorption average pore width

Catalyst and fabricated	Organic	Reaction conditions	Results	Remarks	References
method	pollutants				
MoS ₂ /TiO ₂ /clinoptilolite	Sodium isopropyl	[catalyst] = 0.4 g/L,	SIPX: 97.3 % (3 h)	- Complicated synthesis process	1
(MTC3 – 1mmol	xanthate (SIPX)	[SIPX] = 10 mg/L,	Main ROS: $h^+ < e^- <$	< - Long degradation duration	
Na ₂ MoO ₄ .2H ₂ O)	$(\lambda_{max} = 301 \text{ nm})$	400W Xe lamp	$OH^{\bullet} < O_2^{\bullet-}$		
2-step hydrothermal					
TiO ₂ /NCP	Atenolol	[catalyst] = 3 g/L,	Atenolol: 75 % (1h)	- High energy requirement due to	2
(96.6 % NCP)	$(\lambda_{max} = 284 \text{ nm})$	$[\text{atenolol}] = 10 \text{ mg/L}^{-1},$	Main ROS: h ⁺ and	calcination at high temperature	
Heating		UV lamp 60 W,	OH•	- Low degradation efficiency	
			Mineralization	- High cost due to UV light	
			efficiency: 74 %	- Great amount of catalyst	
			Final products: CO ₂	- Degradation efficiency decreased	
			and H_2O	at pH > 6.0	
ZnO/Fe ₂ O ₃ /Clinoptilolite	Metronidazole	[catalyst] = 1 g/L,	MNZ: 99 %	- Narrow pH range, good	3
(44 % Clinoptilolite,	(MNZ)	[MNZ] = 60 mg/L,	(90 min)	performance at base medium	
$Fe^{3+}/ZnO = 0.06)$	$(\lambda_{max} = 254 \text{ nm})$	$[H_2O_2] = 40 \text{ mg/L},$		- High cost due to UV light	
Sol-Gel		pH = 10		- Great amount of catalyst	
		UV lamp 8 W,			
		reaction time = 90 min			

Table S3. Comparison of the degradation of organic pollutants by various photocatalysts supported on clinoptilolite

Catalyst and fabricated	Organic	Reaction conditions	Results	Remarks	References
method	pollutants				
TiO ₂ /Fe ₂ O ₃ /Clinoptilolite	Diphenhydramine	[catalyst] = 0.5 g/L,	80 % DPH	- High energy requirement due to	4
$(\text{Fe}^{3+/}\text{TiO}_2 = 0.6, 25\%)$	(DPH)	рН=5,	(120 min)	calcination at high temperature	
Clinoptilolite)	$(\lambda_{max} = 258 \text{ nm})$	[DPH] = 50 mg/L,		- Narrow pH range, good	
Hydrothermal		$[H_2O_2] = 50 \text{ mg/L},$		performance at acid medium	
		UV lamp 6 W		- High cost due to UV light	
ZnO/Fe ₂ O ₃ /Clinoptilolite	Diphenhydramine	[catalyst] = 0.5 g/L,	95 % DPH	- Narrow pH range, good	5
$(Fe^{3+/}ZnO = 0.6, 25\%)$	(DPH)	pH=10,	(100 min)	performance at base medium	
Clinoptilolite)	$(\lambda_{max} = 258 \text{ nm})$	[DPH] = 50 mg/L,		- High cost due to UV light	
Sol-Gel		$[H_2O_2] = 50 \text{ mg/L},$			
		UV lamp 6 W			
BiOCl/TiO ₂ /clinoptilolite	Sodium isopropyl	[catalyst] = 0.2 g/L,	SIPX: > 90 % (3 h)	- Complicated synthesis process	6
$(TiO_2/clinoptilolite = 1.5,$	xanthate (SIPX)	[SIPX] = 20 mg/L,	Main ROS: e ⁻ <	- Long degradation duration	
BTC1 - 0.25 mmol Bi ³⁺)	$(\lambda_{max} = 301 \text{ nm})$	400W Xe lamp	$OH^{\bullet} < h^+ < O_2^{\bullet-}$		
Hydrothermal + water bath					
precipitation					
TiO ₂ /CLP/graphene	Nitenpyram	[Nitenpyram] = 80 mg/L,	100 % Nitenpyram	- Complicated synthesis process	7
(30% clinoptilolite, 1 %	$(\lambda_{max} < 400 \text{ nm})$	570 W Xe lamp	(90 min)	- Long degradation duration	
graphene)			Mineralization		
Hydrothermal + Solvothermal			efficiency: 71%		

Catalyst and fabricated	Organic	Reaction conditions	Results	Remarks	References
method	pollutants				
			Main ROS: $h^+ < O_2^{\bullet-}$		
			< OH•		
$g\text{-}C_3N_4/Bi_2MoO_6/clinoptilolite$	Oxytetracycline	[OTC] = 20 mg/L;	87.47 % OTC	- Low dosage of catalysts and	This work
(CNBC-30, 30 % clinoptilolite) (OTC)	[catalyst] = 500 mg/L;	(120 min)	PDS	
Solvothermal	$(\lambda_{max} = 354 \text{ nm})$	$[Na_2S_2O_8] = 1.26 \text{ mM};$		- Wide range of pH (3-11)	
		pH initial; L4X 40 W		- Environmental friendliness	
		LED lamp		energy (LED light)	
				- High degradation efficiency	

Photocatalyst	Organic pollutants	Reaction conditions	Time	Degradation	Main ROS	References
				efficiency		
TiO ₂ /AB	Tetracycline (TC)	[TC] = 30 mg/L	120 min	93.3 %	SO₄•-	8
		[catalyst] = 500 mg/L				
		[PDS] = 3 mM				
$g-C_3N_4$	Bisphenol A (BPA)	[BPA] = 5 mg/L	90 min	99.5 %	$O_2^{\bullet-}, h^+$	9
		[catalyst] = 0.5 g/L				
		[PDS] = 5mM				
CeO2/g-C3N4	Norfloxacin (NOR)	[NOR] = 10 mg/L	60 min	88.6 %	$^{1}\text{O}_{2}, \text{O}_{2}^{\bullet-}, \text{h}^{+} \text{ and }$	10
		[catalyst] = 1 g/L			OH•	
		[PDS] = 5 mM				
Cu/ZnO/CoFe-CLDH	Bisphenol-A (BPA)	[BPA] = 10 mg/L	6 h	99 %	SO4 ^{•-} , OH [•] , O2 ^{•−} ,	11
		[catalyst] = 0.5 g/L			$^{1}O_{2}$	
		[PDS] =0.148mM				
Bi ₂ MoO ₆	Tetracycline (TC)	[TC] = 20 mg/L	60 min	95.18 %	$SO_4^{\bullet-}, h^+$	12
		[catalyst] = 0.5 g/L				
		[PDS] = 16.8 mM				
ZnFe ₂ O ₄	Bisphenol-A (BPA)	[BPA] = 10 mg/L	120min	96.5%	$SO_4^{\bullet-}, OH^{\bullet}, h^+$	9
		[catalyst] = 0.2 g/L				
		[PDS] = 8 mM				

Table S4. The removal of organic pollutants from water by photocatalysts in the presence of persulfate and visible light

Photocatalyst	Organic pollutants	Reaction conditions	Time	Degradation	Main ROS	References
				efficiency		
g-C ₃ N ₄ /Bi ₂ MoO ₆ /clinoptilolite	Oxytetracycline	[OTC] = 20 mg/L	120 min	87.47 %	$^{1}\text{O}_{2}, \text{O}_{2}^{\bullet}$, and h^{+}	This work
(CNBC-30)	(OTC)	[catalyst] = 500 mg/L				
		[PDS] = 1.26 mM				

References

- 1 P. Zhou, Y. Shen, S. Zhao, Y. Chen, S. Gao, W. Liu and D. Wei, Hydrothermal synthesis of novel ternary hierarchical MoS₂/TiO₂/clinoptilolite nanocomposites with remarkably enhanced visible light response towards xanthates, *Applied Surface Science*, 2021, **542**, 148578.
- 2 F. Javadi, R. Tayebee and B. Bahramian, TiO₂/nanoclinoptilolite as an efficient nanocatalyst in the synthesis of substituted 2-aminothiophenes, *Applied Organometallic Chemistry*, 2017, **31**, e3779.
- 3 N. Davari, M. Farhadian and A. R. Solaimany Nazar, Synthesis and characterization of Fe₂O₃ doped ZnO supported on clinoptilolite for photocatalytic degradation of metronidazole, *Environmental Technology*, 2021, **42**, 1734–1746.
- 4 Z. Esmaili, A. R. Solaimany Nazar and M. Farhadian, Degradation of furfural in contaminated water by titanium and iron oxide nanophotocatalysts based on the natural zeolite (clinoptilolite), *Scientia Iranica*, 2017, **24**, 1221–1229.
- 5 N. Davari, M. Farhadian, A. R. S. Nazar and M. Homayoonfal, Degradation of diphenhydramine by the photocatalysts of ZnO/Fe₂O₃ and TiO₂/Fe₂O₃ based on clinoptilolite: Structural and operational comparison, *Journal of Environmental Chemical Engineering*, 2017, **5**, 5707–5720.
- 6 Y. Tan, C. Li, Z. Sun, C. Liang and S. Zheng, Ternary structural assembly of BiOCl/TiO₂/clinoptilolite composite: Study of coupled mechanism and photocatalytic performance, *Journal of Colloid and Interface Science*, 2020, **564**, 143–154.
- 7 G. Hosseinzadeh, N. Ghasemian and S. Zinatloo-Ajabshir, TiO₂/graphene nanocomposite supported on clinoptilolite nanoplate and its enhanced visible light photocatalytic activity, *Inorganic Chemistry Communications*, 2022, **136**, 109144.
- 8 T. Zhang, Y. Liu, Y. Rao, X. Li, D. Yuan, S. Tang and Q. Zhao, Enhanced photocatalytic activity of TiO₂ with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light, *Chemical Engineering Journal*, 2020, **384**, 123350.
- 9 B. Liu, M. Qiao, Y. Wang, L. Wang, Y. Gong, T. Guo and X. Zhao, Persulfate enhanced photocatalytic degradation of bisphenol A by g-C₃N₄ nanosheets under visible light irradiation, *Chemosphere*, 2017, **189**, 115–122.

- 10 W. Liu, J. Zhou and J. Yao, Shuttle-like CeO₂/g-C₃N₄ composite combined with persulfate for the enhanced photocatalytic degradation of norfloxacin under visible light, *Ecotoxicology and Environmental Safety*, 2020, **190**, 110062.
- 11 J. Shen, A. Shi, J. Lu, X. Lu, H. Zhang and Z. Jiang, Optimized fabrication of Cu-doped ZnO/calcined CoFe–LDH composite for efficient degradation of bisphenol a through synergistic visible-light photocatalysis and persulfate activation: Performance and mechanisms, *Environmental Pollution*, 2023, 323, 121186.
- 12Q. Feng, J. Zhou and Y. Zhang, Coupling Bi₂MoO₆ with persulfate for photocatalytic oxidation of tetracycline hydrochloride under visible light, *J Mater Sci: Mater Electron*, 2019, **30**, 19108–19118.

Fig. S1. Calibration curve of oxytetracycline

Fig. S2 (a) Mott-Schottky of various catalysts, (b) XPS spectra of survey scan

Fig. S3. The k_{app} values of (a) different systems, (b) % clinoptilolite, (c) catalyst dosage, (d) PDS concentration, (e) initial pH, and (f) OTC concentration Protection conditions: [OTC] = 10.50 mg/L : [cetalyst] = 0.600 mg/L : [Na S O] = 0.2.10 mM; pH = 3

(Reaction conditons: [OTC] = 10-50 mg/L; [catalyst] = 0-600 mg/L; $[Na_2S_2O_8] = 0-2.10 \text{ mM}$; pH = 3-11; T=30 °C)

Fig. S4. UV-Vis absorption spectrometry of OTC using CNBC-30 during 120 min (30 min of adsorption and 90 min of photocatalysis)

Fig. S5. (a) Schematic diagram of OTC species distribution according to pH and (b)p H_{pzc} of CNBC-30

Fig. S6. The $k_{\mbox{\scriptsize app}}$ values of reaction with the presence of different ions

Fig. S7. Mass spectrum of OTC decomposition over time from 0 - 90 minutes