Supplementary Information (SI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Equity-Centered Adaptive Sampling in Sub-Sewershed Wastewater Surveillance Using Census Data

Amita Muralidharan,^a Rachel Olson, ^a C. Winston Bess,^a Heather N. Bischel^{*a}

^a Department of Civil and Environmental Engineering, University of California Davis, Davis, California 95616, United States. * Corresponding author.

Keywords: health equity, wastewater surveillance, probabilistic assignment, census block, SARS-CoV-2, wastewater-based epidemiology

Synopsis: Identifying strategies to design wastewater sampling frameworks that equitably represent diverse populations within sampling areas.

List of tables included

Tables

- **Table S1.** Primer and probe sequences for the specified targets.
- **Table S2.** Cycling conditions for the RT-ddPCR process.
- **Table S3.** Limit of blank (LOB, reported as a rank position value) and limit of detection (LOD), as reported in Daza-Torres et al. (2023).
- Table S4. Sub-sewershed zones and their populations.
- **Table S5.** Correlation of wastewater data for each sub-sewershed zone (population-weighted moving average) with the overall COD WWTP data (moving average).

Supplementary tables

Target	Oligonucleotide	Primer Sequence (5' \rightarrow 3')	Fluorophore
	Forward	GAC CCC AAA ATC AGC GAA AT	
SARS-	Reverse	TCT GGT TAC TGC CAG TTG AAT CTG	FAM
CoV-2	Probe	ACC CCG CAT TAC GTT TGG TGG ACC	
N1			
	Forward	TTA CAA ACA TTG GCC GCA AA	
SARS-	Reverse	GCG CGA CAT TCC GAA GAA	VIC
CoV-2	Probe	ACA ATT TGC CCC CAG CGC TTC AG	
N2			
	Forward	CTGGAAGTTGGTGGAGTT	
BCoV	Reverse	ATTATCGGCCTAACATACATC	HEX
	Probe	CCTTCATATCTATACACATCAAGTTGTT	
	Forward	GAGTGGTTTGACCTTAACGTTTGA	
PMMoV	Reverse	TTGTCGGTTGCAATGCAAGT	FAM
	Probe	CCTA+C+C+GAAGCA+A+A+TG	

Table S1. Primer and probe sequences for the specified targets.

 Table S2. Cycling conditions for the RT-ddPCR process.

Cycling step	Temp (°C)	Time	# Cycles
Plate equilibrium	25	3 min	1
Reverse Transcription	50	60 min	1
Enzyme activation	95	10 min	1
Denaturation	94	30 sec	40
Annealing/Extension	58	1 min	
Enzyme Deactivation	98	10 min	1
Droplet Stabilization	25	1 min	1

Table S3.	. Limit of blank (LC	DB, reported	as a rank	position v	value) and	limit of de	etection (LOD), as
reported	in Daza-Torres et	al. (2023).						

		LoB	STD	Theoretica I LOD
Conc	N1	13.605	5.547	24.700
(copies/mL of wastewater)	N2	18.544	6.712	31.967
Conc	N1	3.401	1.387	6.175
(copies/mL of wastewater)	N2	4.636	1.678	7.992

sewershed zones

populations.

Table S4. Suband their

Sub-sewershed Zone	Population
SR-A	12389
SR-B	7936
SR-C	15920
SR-D	1324
SR-E	1794
SR-F	3920
SR-G	5935
SR-H	3696
SR-I	10912

S4

Table S5. Correlation of wastewater data for each sub-sewershed zone (population-weightedmoving average) with the overall COD WWTP data (moving average).

Zone Name	Correlation Coefficient	P-Value
SR-A	0.770	4.19e-15
SR-B1	0.935	8.81e-33
SR-B2	0.836	1.24e-19
SR-B3	0.927	4.69e-31
SR-B4	0.922	3.26e-30
SR-C1	0.793	1.69e-16
SR-C2	0.890	3.22e-25
SR-D	0.734	3.15e-13
SR-E	0.877	1.13e-23
SR-F1	0.877	1.24e-23
SR-F2	0.870	6.78e-23
SR-G	0.738	2.20e-13
SR-H	0.733	3.88e-13
SR-I	0.866	1.92e-22