Supplementary Information (SI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Mathematical modeling to size anaerobic stabilization ponds intended for slaughterhouse wastewater treatment – the role of temperature and hydraulic retention time

Summary

- 1. Temperature ranges for anaerobic digestion literature review (Table S1)
- 2. E_{COD} as a function of time (t_p) for each studied temperature (Figure S1)
- Individual asymptotic regression model as a function of temperature (Figure S2)
- 4. Simulation of E_{BOD} vs t_p for theoretical temperatures within the studied range using Equation 11 (Figure S3)
- 5. Example of application for SWWTP sizing using equations 11 and 13

(AL SEADI et al., 2008)

(DEUBLEIN; STEINHAUSER, 2008)

Reference Psychrophilic Mesophilic Thermophilic <20 43-55 (MATHERI et al., 2016) 30-42 (SINDALL, 2014) < 20 30-40 50-60 (ZHANG et al., 2014) 10-30 30-50 50-60 (DENG et al., 2014) 15-25 35-37 55-60 (YENIGÜN; DEMIREL, 2013) 30-40 45-65 (DROSG, 2013) 36-43 50-65 (MANYI-LOH et al., 2013) < 20 25-37 55-65 (TORTORA; FUNKE; CASE, 2012) < 20 20-40 45-70 (VINDIS et al., 2009) 12-16 35-37 55-60

< 25

< 25

25-45

25-45

45-70

> 65

Table S1 – Temperature (°C) ranges for anaerobic digestion

(EL-MASHAD; ZHANG, 2010)	< 25	25-40	> 65
(ANGELIDAKI; SANDERS, 2004)	< 20	25-40	45-60
(BURKE, 2001)	< 20	20-40	43-71

SELORMEY, G. K. et al. A review of anaerobic digestion of slaughterhouse waste: effect of selected operational and environmental parameters on anaerobic biodegradability. **Reviews in Environmental Science and Biotechnology,** Springer Science and Business Media B.V.,1 dec. 2021.

Figure S1 - E_{COD} as a function of t_{p} (days) for all studied temperatures ($^{0}\text{C})$

Figure S2 - Individual asymptotic regression model as a function of temperature (Figure S2)

Figure S2 - Individual asymptotic regression model as a function of temperature (Figure S2) - continuation

Figure S3 - Simulation of E_{BOD} vs t_{p} for theoretical temperatures within the studied range using the Equation 11

EXAMPLE OF APPLICATION: USE OF PROPOSED MODEL FOR SWTTP DIMENSIONING.

A certain slaughterhouse has the capacity of 750 slaughters per day (preliminary project estimation), generating a contribution of 2,000 L of effluent per capta. Admitting a safety factor of 25%, wastewater production is estimated in 1,875 m³ day-1. BOD concentration of raw wastewater is 1,200 mg O₂ L⁻¹. Average temperature for the coldest month is 16 °C. The environmental legislation preconizes a minimum BOD organic load removal of 95% before discharge into natural waterbodies. How could the constructive project of a SWWTP be for meeting this demand?

ANSWER:

INPUT DATA:

T (average air temperature): 16 °C;

Q (input flow): 1,875 m³ day⁻¹; S_0 (input BOD): 1,200 mg O_2 L⁻¹, or simply mg L⁻¹;

E_{BOD}: 95% BOD removal;

 $HRT_{total} \cong t_{p} (days);$

a) Estimating the total hydraulic retention time (HRT_{total}) using the proposed model (Equation 13):

$$HRT_{total}(days) = \frac{\left\{ log \left[-\frac{E_{BOD} - (100 - 0.24T)}{(102 - 0.34T)} \right] \right\}}{log(1.12 - 0.026T)}$$

$$HRT_{total}(days) = \frac{\left\{ log \left[-\frac{95 - (100 - 0.24 * 16)}{(102 - 0.34 * 16)} \right] \right\}}{log(1.12 - 0.026 * 16)}$$

$$HRT_{total}(days) = \frac{\left\{ log \left[-\frac{95 - (96 * 16)}{(97)} \right] \right\}}{log(0.704)}$$

$$HRT_{total}(days) = \frac{log(0.012)}{log(0.704)} = 12.7 days$$

b) Calculating the total SWWTP volume (Equation 14):

$$V_{total} = HRT_{Total} \times Q$$

$$V_{total} = 12.6 * 1,875 = 23.6 m^3$$

c) Determining how many ponds (n) will be constructed:

Considering field characteristics, 4 equivalent ponds (opted by the user).

d) Determining individual volume of each pond

Admitting 4 equivalent ponds,
$$V_n = \frac{23.6}{4} =$$
5,900 m³

e) Estimating the accumulated HRT (HRT_n) for each pond in the system (for equivalent ponds):

$$HRT_n = \frac{HRT_{total}}{n_{total}} \times n$$

In which n = position of the pond in the sequential system

Obs: for ponds with different dimensions, HRT_n is calculated by summing the HDT of the individual predecessor ponds.

After the 1st pond (n = 1), $HRT_1 = 3.2$ days. For n = 2, $HRT_2 = 6.4$ days and so on, totaling $HRT_4 = 12.7$ after the 4th pond, disregarding little rounding calculations.

f) Estimating the accumulated BOD removal efficiency $(E_{BOD, n})$ for each pond in the system, considering the proper HRT_n (Equation 11):

$$E_{BOD,\,n} = \left(100 - 0.24T\right) - \left[\left(102 - 0.34T\right) \times \left(1.12 - 0.026T\right)^{HRT}{}^{n}\right]$$

Admitting T = 16 °C, for the first anaerobic pond (n = 1) the value of HRT_1 = 3.2 days and $E_{BOD, 1}$ = 64.3%. After the 2nd pond, the accumulated BOD removal is 85.5% and so on.

g) Calculating the output BOD (Sout, n) for each pond:

$$S_n = S_0 - \left(S_0 * \frac{E_{BOD, n}}{100}\right)$$

For the first pond, $S_{out, 1}$ = 428 mg L⁻¹; after the 2nd pond, the residual BOD is $S_{out, 2}$ = 174 mg L⁻¹ and so on.

In summary, the performance of the anaerobic pond system is:

	HRT _{acc} (days)	E _{BOD, acc} (%)	S _{out} (mg L ⁻¹)
Anaerobic pond 1	3.2	64.3	428
Anaerobic pond 2	6.4	85.5	174
Anaerobic pond 3	9.6	92.7	88
Anaerobic pond 4	12.7	95.0	60