Supplementary Information (SI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Sorption and Biodegradation of Stormwater Trace Organic

Contaminants via Composite Alginate Bead Geomedia with

Encapsulated Microorganisms

Debojit S. Tanmoy ^{a, b} and Gregory H. LeFevre ^{*, a, b}

^a Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans

Center, Iowa City, Iowa, 52242, United States

^b IIHR—Hydroscience and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics

Laboratory, Iowa City, Iowa, 52242, United States

*Corresponding Author: gregory-lefevre@uiowa.edu; Phone: 319-335-5655; 4105 Seamans Center for Engineering, University of Iowa, Iowa City IA, United States

14 total pages, 2 Figures, and 7 Tables

Table of Contents

Section S 1: Synthetic Stormwater Recipe
Section S 2: Analytical Method Details
Figure S 1. Neonicotinoid sorption onto different BioSorp Beads
Figure S 2. Overview summary of BioSorp Bead preparation
Table S 1. Compositions of different types of BioSorp beads. 6
Table S 2 (a). Experimental design for abiotic sorption experiments
Table S 2 (b). Experimental design for abiotic sorption experiments. 8
Table S 3. Experimental design for coupled sorption-biodegradation experiments. 9
Table S 4. First order rate constants (with 95% confidence interval level) for imidacloprid anddesnitro-imidacloprid sorption onto different PAC-Wood dust beads. [The detailed compositionsof these beads are in Table S 1]
Table S 5. Phosphate sorption (with 95% confidence interval level) onto various BioSorp beads(Calcium-alginate and iron-alginate beads).10
Table S 6. Acetanilide, Imidacloprid, and Desnitro-imidacloprid sorption (with 95% confidenceinterval level) onto various BioSorp beads (Calcium-alginate and iron-alginate beads).11
Table S 7. Sorption of different long and short-chain PFAS onto various BioSorp beads(Calcium-alginate and iron-alginate beads), different black carbon materials, iron-basedmaterials, and aluminum-based materials.12
REFERENCES. 13

Section S 1: Synthetic Stormwater Recipe.

We prepared our synthetic stormwater (pH: 7±0.2) by dissolving 0.072 mM NH₄Cl, 0.75 mM CaCl₂, 0.33 mM Na₂SO₄, 0.072 mM NaNO₃, 1 mM NaHCO₃, 0.075 mM MgCl₂, and 0.016 mM Na₂HPO₄ in deionized water. The pH was adjusted using NaOH and/or HCl.

Section S 2: Analytical Method Details.

We used Agilent 1260 Infinity liquid chromatograph and Agilent 6460 triple quadrupole mass spectrometer to measure imidacloprid and desnitro-imidacloprid concentration for the LC-MS/MS analysis [column: Agilent Zorbax eclipse plus C18 (4.6 mm × 150 mm × 5 μ m); guard column: Zorbax eclipse plus C18 (4.6 mm × 12.5 mm × 5 μ m)]. We used the following MS/MS parameters— gas temperature (N₂): 300 deg C, gas flow: 5 L/min, nebulizer pressure: 45 psi, sheath gas temperature: 250 deg C, sheath gas flow: 11 L/min, capillary voltage (+)(-): 3500/3500 V, nozzle voltage (+)(-): 500/500 V, injection volume: 20 μ L, column temperature: 50 deg C, mobile phase A: 77.5% water with 0.1% formic acid, mobile phase B: 22.5% acetonitrile with 0.1% formic acid, and flow rate: 0.8 mL/min. Parent ion (m/z), quant Ion (m/z) [Collision Energy, V], fragment voltage (V), dwell time (ms), polarity, and accelerator voltage (V) for imidacloprid were 256.06, 213 [8], 175.1 [12], 67, 20, positive, 4, respectively. For desnitro-imidacloprid, these parameters were— parent ion (m/z): 211.1, quant Ion (m/z) [Collision Energy, V]: 126 [22], qual Ion (m/z) [Collision Energy, V]: 90.03 [36], fragment voltage (V): 63, dwell time (ms): 200, polarity: positive, and accelerator voltage (V): 63, dwell time (ms): 200, polarity: positive, and accelerator voltage (V): 63, dwell time (ms): 200, polarity: positive, and accelerator voltage (V): 63, dwell time (ms): 200, polarity: positive, and accelerator voltage (V): 64.

We used Agilent 1260 liquid chromatography system with diode array detection (DAD) to measure acetanilide concentration [Column: Higgins Analytical Sprite Targa C18 (40 x 2.1 mm, 5 μ m) with a guard column]. The analytical parameters were as follows— peak wavelength: 238.5 nm, column temperature: 50 deg C, injection volume: 10 μ L, pump flow: 0.6 mL/min, method

length: 10 min, mobile phase A: 15% methanol with 0.1% formic acid, and mobile phase B: 85% water with 0.1% formic acid.

Figure S 1. Neonicotinoid sorption onto different BioSorp Beads. Error bars represent the standard error about the mean (error bars too small to see are obscured by the data points). *Desnitro-imidacloprid sorption experiment was not conducted with WF_WTR-CaCl₂ beads.

Figure S 2. Overview summary of BioSorp Bead preparation. (a) BioSorp Bead preparation method wherein dry amendments are mixed into dissolved sodium alginate solution that is added dropwise into a polyvalent cation solution via peristaltic pump to instantaneously form beads, (b) Wet beads (freshly prepared) drying on wax paper, (c) Dried BioSorp Beads, (d) Stereoscope image of white rot fungi (*Trametes versicolor*) growing from BioSorp Beads (made with 1% sodium alginate, 1% powder activated carbon, 1% wood flour, and 3% CaCl₂), and (e) *Trametes versicolor* grew from the BioSorp beads and spread into malt extract media.

Testing conditions		Bead Preparation Recipe									
		Sodium Alginate Concentration	Crosslinker Concentration	Cross-linker Type	External Electron Shuttle (AQDS)	PAC	Wood Flour	Fe-WTR	Drying Temperature		
1. Varied	Baseline condition	1%	270.3 mM	CaCl ₂	-	1%	1%	-	Air dried at room temp		
Concentration	Other conditions	0.5%, 1.5%	270.3 mM	CaCl ₂	-	1%	1%	-	Air dried at room temp		
2. Varied	Baseline condition	1%	270.3 mM	CaCl ₂	-	1%	1%	-	Air dried at room temp		
Cross-Inker Concentration	Other conditions	1%	450.5 mM	CaCl ₂	-	1%	1%	-	Air dried at room temp		
3. Varied	Baseline condition	1%	270.3 mM	CaCl ₂	-	1%	1%	-	Air dried at room temp		
Сгозя-пикег Туре	Other conditions	1%	270.3 mM	FeCl ₃	-	1%	1%	-	Air dried at room temp		
4. Effects of External	Baseline condition	1%	270.3 mM	CaCl ₂	-	1%	1%	1%	Air dried at room temp		
Electron Shuttle	Other conditions	1%	270.3 mM	CaCl ₂	0.1%	1%	1%	1%	Air dried at room temp		
5. Effects of Cross-linker	Baseline condition	1%	270.3 mM	CaCl ₂	0.1%	1%	1%	1%	Air dried at room temp		
Type on Mechanical	Other conditions	1%	270.3 mM	FeCl ₃	0.1%	1%	1%	1%	Air dried at room temp		
6. Drying Temperature	Baseline condition	1%	270.3 mM	CaCl ₂	0.1%	1%	1%	1%	Air dried at room temp		
	Other conditions	1%	270.3 mM	CaCl ₂	0.1%	1%	1%	1%	Oven dried (at 70° C for 8 hours)		

Experiment Type	Experiments	Contaminant		Sorb	ent	sorbent mass (mg)	Solvent	solvent volume (mL)
		50 8	Calcium alginate beads	Baseline condition Other	PAC_WF_WTR WF_WTR; PAC_WF; WE		Synthetic stormwater (pH ~7)	100
	sorption kinetics	phosphate	Ferric	Baseline condition	PAC_WF_WTR	100		
			alginate beads	Other condition	WF_WTR; WTR; WF; PAC_WF; PAC			
				PA	С	50		
	Acetanilide sorption	40 mg/L	Calcium	Baseline condition	PAC_WF_WTR		Synthetic stormwater (pH ~7)	100
	kinetics	acetanilide	alginate beads	Other condition	PAC_WF	100		
Abiotic Sorption			Ferric alginate beads	PAC_WF_WTR				
	Imidacloprid and desnitro-imidacloprid sorption kinetics	30 mg/L imidacloprid and 30mg/L desnitro- imidacloprid	Calcium alginate beads	Baseline condition	PAC_WF_WTR	100	Synthetic stormwater (pH ~7)	100
				Other condition	PAC_WF			
			Ferric alginate beads	P	AC_WF_WTR			
	Imidacloprid and imidacloprid and desnitro-imidacloprid desnitro- sorption isotherm imidacloprid		Calcium alginate beads	Calcium PAC_WF		100	Synthetic stormwater (pH ~7)	100
		(10, 15, 20, 25, and 30 mg/L)	Ferric alginate beads		PAC_WF			
	Effects of varied alginate concentrations on neonicotinoid sorption kinetics	10 mg/L imidacloprid and 10mg/L desnitro- imidacloprid	Calcium alginate beads (PAC_WF)	Baseline condition	1% (w/v)	100	Synthetic stormwater (pH ~7)	100
	sorption knows	milatopila		Other condition	0.5% (w/v), 1.5% (w/v)			

Table S 2 (a). Experimental design for abiotic sorption experiments.

Experiment Type	Experiments	Contaminant		Sorbent			Solvent	solvent volume (mL)
Abiotic Sorption Experiment	Effects of varied crosslinker concentrations on	10 mg/L imidacloprid and 10mg/L desnitro-	Calcium alginate beads	Baseline condition	3% (w/v)	100	Synthetic stormwater (pH ~7)	100
	kinetics	imidacloprid	(PAC_WF)	Other condition	5% (w/v)			
	Effects of varied drying temperature on neonicotinoid sorption kinetics	10 mg/L imidacloprid and 10mg/L desnitro- imidacloprid	Calcium alginate beads (PAC_WF)	Baseline condition	air drying at room temp	100	Synthetic stormwater (pH ~7)	
				Other condition	Oven dried (at 40° C and 70° C for 8 hours)			100
		10 mg/L PFOA, PFBA, and PFBS	Calcium alginate beads	Baseline condition	PAC_WF_WTR		Synthetic stormwater (pH ~7)	
	PEAS sorption kinetics			Other condition	PAC_WF; WF_WTR	30		200
	PFAS sorption kinetics		Ferric alginate beads	Baseline condition	PAC_WF_WTR	50		200
				Other condition	WF_WTR]		

 Table S 2 (b). Experimental design for abiotic sorption experiments.

E-maniment Trme Conteminer				Deed		Bead	Solvent	solvent
Experiment Type	Containnait	r uligi			beau		Solvent	(mL)
				Baseline condition	PAC_WF_WTR_CaCl ₂ and PAC_WF_WTR_FeCl ₃			
			Treatment	Other condition	PAC_WF_WTR_ AQDS _CaCl ₂ and PAC_WF_WTR_ AQDS _FeCl ₃			
			Autoclaved	Baseline condition	PAC_WF_WTR_CaCl ₂ and PAC_WF_WTR_FeCl ₃			
		T. versicolor	C. versicolor Control Other Condition PAC_WF_WTR_AQDS_CaCl ₂ a	PAC_WF_WTR_ AQDS _CaCl ₂ and PAC_WF_WTR_ AQDS _FeCl ₃	_			
	40 mg/L acetanilide Treat	Azide	Baseline condition	PAC_WF_WTR_CaCl ₂ and PAC_WF_WTR_FeCl ₃				
Coupled sorption			control	Other condition	PAC_WF_WTR_ AQDS _CaCl ₂ and PAC_WF_WTR_ AQDS _FeCl ₃	100	Synthetic	100
and biodegradation		nilide	Treatment	Baseline condition	PAC_WF_WTR_CaCl ₂ and PAC_WF_WTR_FeCl ₃	100	(pH ~7)	100
				Other condition	PAC_WF_WTR_ AQDS _CaCl ₂ and PAC_WF_WTR_ AQDS _FeCl ₃			
			Autoclaved	Baseline condition	PAC_WF_WTR_CaCl ₂ and PAC_WF_WTR_FeCl ₃			
		P. ostreatus	control	Other condition	PAC_WF_WTR_ AQDS _CaCl ₂ and PAC_WF_WTR_ AQDS _FeCl ₃			
			Azide control	Baseline condition	PAC_WF_WTR_CaCl ₂ and PAC_WF_WTR_FeCl ₃			
				Other condition	PAC_WF_WTR_ AQDS _CaCl ₂ and PAC_WF_WTR_ AQDS _FeCl ₃			

Table S 3. Experimental design for coupled sorption-biodegradation experiments.	
--	--

Table S 4. First order rate constants (with 95% confidence interval level) for imidacloprid and desnitro-imidacloprid sorption onto different PAC-Wood dust beads. [The detailed compositions of these beads are in **Table S 1**]

	Imidacloprid	Desnitro-imidacloprid		
Bead type	1st order rate constant (1/day)	r ²	1st order rate constant (1/day)	\mathbf{r}^2
0.5% SA - 3% $CaCl_2$	0.22 (0.19 to 0.25)	0.97	0.21 (0.19 to 0.23)	0.96
1% SA - 3% CaCl ₂	0.19 (0.15 to 0.23)	0.99	0.18 (0.14 to 0.22)	0.97
1.5% SA - 3% CaCl ₂	0.13 (0.11 to 0.14)	0.98	0.17 (0.16 to 0.19)	0.95
1% SA - 5% CaCl ₂	0.16 (0.14 to 0.17)	0.99	0.15 (0.11 to 0.18)	0.95
T40	0.21 (0.20 to 0.22)	0.99	0.18 (0.13 to 0.24)	0.96
T70	0.18 (0.11 to 0.24)	0.97	0.17 (0.16 to 0.19)	0.93

*3% CaCl₂= 270.3 mM CaCl₂.

**T40= beads oven dried at 40 deg C.

***T70= beads oven dried at 70 deg C.

Table S 5. Phosphate sorption (with 95% confidence interval level) onto various BioSorp beads (Calcium-alginate and iron-alginate beads).

Types of beads	maximum phosphate sorption capacity (mg/g)	adsorption rate constant, $k_{ad} (day^{-1})$	r ²
WF-WTR-CaCl ₂	13.01 (11.26 to 15.42)	0.37 (0.20 to 0.72)	0.83
PAC_WF_WTR_CaCl ₂	8.25 (7.70 to 8.88)	0.27 (0.21 to 0.34)	0.97
WF_CaCl ₂	2.10 at day 18 (poor model fit)	0.13	-
PAC_WF_CaCl ₂	0.88 at day 18	* did not follow Langmuir adsorption model	-
WF-WTR-FeCl ₃	42.12 (38.79 to 45.82)	0.99 (0.53 to 1.89)	0.89
WTR_FeCl ₃	38.88 (36.96 to 40.82)	1.33 (0.98 to 1.84)	0.96
WF_FeCl ₃	34.03 (32.09 to 35.99)	1.52 (1.07 to 2.29)	0.95
PAC_WF_FeCl ₃	29.55 (26.97 to 32.46)	0.37 (0.26 to 0.55)	0.92
PAC_FeCl ₃	24.98 (21.51 to 30.09)	0.29 (0.16 to 0.61)	0.89
PAC_WF_WTR_FeCl ₃	17.03 (15.89 to 18.37)	0.20 (0.17 to 0.25)	0.98

Sorbort	Maximum sorption capacity (mg/g)						
Sorbent	Acetanilide	Imidacloprid	Desnitro-imidacloprid				
PAC	73.77 (70.88 to 76.68)	112 (111.19 to 112.81)	37 (35.4 to 38.6)				
PAC_WF_CaCl ₂ bead	39.43 (36.49 to 42.45)	26.39 (25.35 to 27.54)	14.96 (13.89 to 16.13)				
PAC_WF_WTR_CaCl ₂ bead	38.86 (36.91 to 40.85)	25.52 (23.05 to 29.03)	11.14 (10.52 to 11.83)				
PAC_WF_WTR_FeCl ₃ bead	38.33 (35.77 to 40.96)	18.52 (17.15 to 20.32)	13.04 (11.75 to 14.88)				

Table S 6. Acetanilide, Imidacloprid, and Desnitro-imidacloprid sorption (with 95% confidence interval level) onto various BioSorp beads (Calcium-alginate and iron-alginate beads).

Table S 7. Sorption of different long and short-chain PFAS onto various BioSorp beads (Calciumalginate and iron-alginate beads), different black carbon materials, iron-based materials, and aluminum-based materials.

Types	Sorbent Material	PFOA	PFBA	PFBS	Reference
		sorption	sorption	sorption	
		capacity	capacity	capacity	
		(mg/g)	(mg/g)	(mg/g)	
BioSorp	1% sodium alginate-1% PAC-1%	8.85 (PAC	5.17 (PAC	3.40 (PAC	This study
beads	Wood flour-3% CaCl ₂ Beads	normalized	normalized	normalized	
		<i>capacity</i> =	<i>capacity</i> =	<i>capacity</i> =	
		25.67)	14.99)	9.86)	
	1% sodium alginate-1% PAC-1%	6.50 (PAC	1.44 (PAC	2.20 (PAC	This study
	Wood flour-1% FeWTR-3%	normalized	normalized	normalized	
	CaCl ₂ Beads	<i>capacity</i> =	<i>capacity</i> =	<i>capacity</i> =	
		25.35)	5.62)	8.58)	
	1% sodium alginate-1% Wood	0	0	0.39	This study
	flour-1% FeWTR-3% CaCl ₂				
	Beads				
	1% sodium alginate-1% Wood	0	0	0	This study
	dust-3% CaCl ₂ Beads				
	1% sodium alginate-1% PAC-1%	13.10	1.20 (PAC	5.07 (PAC	This study
	Wood flour-270.3 mM FeCl ₃	(PAC	normalized	normalized	
	Beads	normalized	<i>capacity</i> =	<i>capacity</i> =	
		<i>capacity</i> =	3.46)	14.62)	
		37.78)			
	1% sodium alginate-1% PAC-1%	9.27 (PAC	0	4.57 (PAC	This study
	Wood flour-1% FeWTR -270.3	normalized		normalized	
	mM FeCl ₃ Beads	<i>capacity</i> =		<i>capacity</i> =	
		35.5)		17.5)	
	1% sodium alginate-1% Wood	6.91	0	0.84	This study
	flour-1% FeWTR-270.3 mM				
	FeCl ₃ Beads				
	2% sodium alginate-3% Biochar-	n.a.	n.a.	2.895	Militao et
	4% CaCl ₂ beads				al. ¹ (2023)
Alginate	Biochar (made from spent coffee	12.87	n.a.	n.a.	Steigerwald
composite	ground)				et al. ²
beads					(2023)
Black C	GAC	8.54	3.01	n.a.	Riegel et
materials	~ ~ ~				al. ³ (2023)
	Coconut-based GAC	12.2 ± 0.2	n.a.	n.a.	Siriwardena
		(after 10			et al. ⁴
		days)			(2018)
	Biochar	16.5*10-5	n.a.	8*10-5	Dalahmeh
					et al. ⁵
					(2019)

Types	Sorbent Material	PFOA sorption capacity (mg/g)	PFBA sorption capacity (mg/g)	PFBS sorption capacity (mg/g)	Reference
Black C materials	Coal based GAC	13.6 ± 0.1 (after 10 days)	n.a.	n.a.	Siriwardena et al. ⁴ (2018)
	GAC	22.7	n.a.	n.a.	Yao et al. ⁶ (2014)
	GAC	35.69	6.72	14.49	Zhang et al. ⁷ (2021)
	GAC	52.8	n.a.	n.a.	Zhang et al. ⁸ (2016)
	PAC	0.11	n.a.	7*10-4	Murray et al. ⁹ (2019)
	PAC	2.49	n.a.	n.a.	Zhi et al. ¹⁰ (2015)
	PAC	16.5	n.a.	n.a.	Qu et al. ¹¹ (2009)
	PAC	484	n.a.	n.a.	Li et al. ¹² (2017)
	Different types of activated carbon felts	2.08 to 156	n.a.	n.a.	Saeidi et al. ¹³ (2020)
Iron based materials	Iron-Filings-based Green Environmental Media (IFGEM)	7*10 ⁻⁹	n.a.	n.a.	Ordonez et al. ¹⁴ (2022)
AL based materials	Aluminum-based Green Environmental Media (AGEM)	1.5*10-6	n.a.	n.a.	Ordonez et al. ¹⁴ (2022)
	Aluminum-water treatment residuals	0.094 (at pH 7)	n.a.	n.a.	Zhang et al. ¹⁵ (2021)

Table S 6. (continued)

REFERENCES.

- 1 I. M. Militao, F. Roddick, L. Fan, L. C. Zepeda, R. Parthasarathy and R. Bergamasco, PFAS removal from water by adsorption with alginate-encapsulated plant albumin and rice straw-derived biochar, *Journal of Water Process Engineering*, 2023, **53**, 103616.
- 2 J. M. Steigerwald, S. Peng and J. R. Ray, Novel Perfluorooctanesulfonate-Imprinted Polymer Immobilized on Spent Coffee Grounds Biochar for Selective Removal of Perfluoroalkyl Acids in Synthetic Wastewater, *ACS ES&T Engineering*, 2023, **3**, 520–532.
- M. Riegel, B. Haist-Gulde and F. Sacher, Sorptive removal of short-chain perfluoroalkyl substances (PFAS) during drinking water treatment using activated carbon and anion exchanger, *Environ Sci Eur*, 2023, **35**, 12.
- 4 D. P. Siriwardena, M. Crimi, T. M. Holsen, C. Bellona, C. Divine and E. Dickenson, Changes in Adsorption Behavior of Perfluorooctanoic Acid and Perfluorohexanesulfonic Acid Through Chemically-Facilitated Surface Modification of Granular Activated Carbon, *Environ Eng Sci*, 2018, **36**, 453–465.

- 5 S. S. Dalahmeh, N. Alziq and L. Ahrens, Potential of biochar filters for onsite wastewater treatment: Effects of active and inactive biofilms on adsorption of per- and polyfluoroalkyl substances in laboratory column experiments, *Environmental Pollution*, 2019, **247**, 155–164.
- 6 Y. Yao, K. Volchek, C. E. Brown, A. Robinson and T. Obal, Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water, *Water Science and Technology*, 2014, **70**, 1983–1991.
- 7 D. Zhang, Q. He, M. Wang, W. Zhang and Y. Liang, Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar, *Environ Technol*, 2021, **42**, 1798–1809.
- 8 D. Zhang, Q. Luo, B. Gao, S.-Y. D. Chiang, D. Woodward and Q. Huang, Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon, *Chemosphere*, 2016, **144**, 2336–2342.
- 9 C. C. Murray, H. Vatankhah, C. A. McDonough, A. Nickerson, T. T. Hedtke, T. Y. Cath, C. P. Higgins and C. L. Bellona, Removal of per- and polyfluoroalkyl substances using super-fine powder activated carbon and ceramic membrane filtration, *J Hazard Mater*, 2019, **366**, 160–168.
- 10 Y. Zhi and J. Liu, Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry, *Environmental Pollution*, 2015, **202**, 168–176.
- 11 Y. Qu, C. Zhang, F. Li, X. Bo, G. Liu and Q. Zhou, Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon, *J Hazard Mater*, 2009, **169**, 146–152.
- 12 J. Li, Q. Li, L. Li and L. Xu, Removal of perfluorooctanoic acid from water with economical mesoporous melamine-formaldehyde resin microsphere, *Chemical Engineering Journal*, 2017, **320**, 501–509.
- 13 N. Saeidi, F.-D. Kopinke and A. Georgi, Understanding the effect of carbon surface chemistry on adsorption of perfluorinated alkyl substances, *Chemical Engineering Journal*, 2020, **381**, 122689.
- 14 D. Ordonez, A. Valencia, A. H. M. A. Sadmani and N.-B. Chang, Green sorption media for the removal of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from water, *Science of The Total Environment*, 2022, **819**, 152886.
- 15 Z. Zhang, D. Sarkar, R. Datta and Y. Deng, Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by aluminum-based drinking water treatment residuals, *Journal of Hazardous Materials Letters*, 2021, 2, 100034.