Supplementary Information (SI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary material

Sludge-derived novel Fe₃O₄-MgO@C composites for tetracycline abatement

from wastewater using sustainable bio-electro-Fenton and nutrients recovery

with co-precipitation: A waste-to-resource strategy

Azhan Ahmad^a, Monali Priyadarshini^b, Shraddha Yadav^b, Makarand M. Ghangrekar^{a, b, c*} and Rao Y. Surampalli^d

^a Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.

^b School of Environmental Science and Engineering, Indian Institute of Technology

Kharagpur, Kharagpur-721302, India.

^c National Institute of Technology Puducherry, Karaikal, 609609, India

^d Global Institute for Energy, Environment and Sustainability, Kansas, USA

* Corresponding author; E-mail address: <u>ghangrekar@civil.iitkgp.ac.in</u>

List of captions

Text S1. Characterization of catalyst

Text S2. Economic analysis

Text S3. Synthetic urine

Fig. S1. Elemental composition of sludge waste-derived catalysts according to EDX analysis

Fig. S2. (a) Fe 2p; (b) Mg 1s; (c) C 1s; and (d) O 1s spectra of Fe₃O₄-MgO@C during XPS analysis

Fig. S3. MALDI-TOF spectra of (b) initial TC sample; (c) treated effluent

Fig. S4. Degradation of TC antibiotic in homogeneous BEF process

Fig. S5. Power density and Voltage in (a) Fe₃O₄-MgO@C; and (b) Control BEF system

Fig. S6. Influence of current (a) TC removal; (b) H_2O_2 production; and (c) TOC removal and mineralization current efficiency in EF system

Fig. S7. AOS and COS of raw and BEF-treated wastewater representing biodegradability

Fig. S8. Removal of (a) TC and PO_4^{3-} from synthetic urine during the BEF process; (b) removal of PO_4^{3-} and NH_4^+ during precipitation; and (c) struvite yield from urine with the addition of Fe_3O_4 -MgO@C

Fig. S9. Schematic of BEF and co-precipitation revealing contaminant removal in each process

Table S1. Characteristics of raw municipal wastewater

Text S1. Characterization of catalyst

Electrochemical analyses, including electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), cyclic voltammetry (CV), and Tafel analyses, were conducted using an electrochemical workstation (Metrohm, Switzerland). The workstation was comprised of a three-electrode system with glassy carbon, platinum, and Ag/AgCl serving as working, counter, and reference electrodes, respectively. All electrochemical measurements were carried out in a 50 mM Na₂SO₄ solution at a scan rate of 0.01 mV/s. Morphological analysis of the catalyst was performed using scanning electron microscopy (SEM) equipment (Carl Zeiss, USA). Fourier-transform infrared spectroscopy (FTIR) was conducted within the wavenumber range of 400 to 4000 cm⁻¹ using Thermo Fisher Scientific Instruments, USA equipment. X-ray diffraction (XRD) was utilized to investigate the structural characteristics and composition of the waste-derived catalyst and sludge. The XRD analysis involved scanning 2θ from 10 to 80° at a scanning rate of 2° min⁻¹ and a step size of 0.02 using a Bruker D2 Phaser instrument from Germany.

The surface area of the composite catalyst was measured using a multipoint Brunauer–Emmett– Teller (BET) analyser from BEL, Japan, Inc. X-ray photoelectron spectroscopy (XPS) was employed to determine the structural characteristics of the catalyst, utilizing equipment from ULVAC Physical Electronics, USA. Additionally, the magnetic properties of the waste-derived catalyst were analysed using a vibrating sample magnetometer (VSM) from Lake Shore Cryotronics, USA.

Text S2. Economic analysis

The economics of electro-Fenton operation was aimed at assessing the real-scale capability of the process. It is established on the operating cost (OC_{total}) needed to eliminate contaminants by unit order of magnitude per m³ of contaminated water, which is also recognized as OC_{total} per order. The OC_{total} includes the catalyst cost, chemical cost, and electricity cost, which were determined by calculating the energy consumption (W) and electrical energy per order (*EEO*) as per Eq. (S1) – Eq. (S5)

$$W\left(\frac{kWh}{m^{3}}\right) = \frac{UIT}{V}$$

$$EEO\left(\frac{m^{3}}{\log p}\right) = \frac{W}{\log \frac{C_{0}}{C}}$$
(S1)
(S2)

 $OC_{total} = Catalyst cost + Chemical cost + Electricity cost$ (S3)

Where, U is the voltage (V), I is the imposed current (A), T is the treatment duration (h), V is the volume (m³), and C_o and C are the initial and final concentrations of contaminants (mg/L), respectively.

Chemical cost
$$(\$/m^3)$$
 = Electrolyte utilized $(kg/m^3) \times cost$ of electrolyte $(\$/kg)$ (S4)

Electricity cost $(\$/m^3) = EEO (kWh/m^3/log) \times per unit cost of electrical energy (\$/kWh)$ (S5)

Additionally, the mineralization current efficiency (MCE%) was computed with Δ TOC (mg/L) using Eq. (S6)

$$MCE (\%) = \frac{nFV\Delta TOC}{CmIt}$$
(S6)

Where, *n* is the total number of electrons consumed by SDS for mineralization, *t* is the treatment duration (h), *V* is the wastewater volume (L), *F* indicates the Faraday's constant (96485 C mol⁻¹), *c* represents the conversion factor (4.32×10^7), and *I* is the external applied current (A).

Text S3: Synthetic urine

The synthetic urine contained 1.36 g/L NaCH₃COO·3H₂O, 0.74 g/L KCl, 0.58 g/L NaCl, 0.68 g/L KH₂PO₄, 0.87 g/L K₂HPO₄, 0.28 g/L NH₄Cl, 0.1 g/L MgSO₄·7H₂O, 0.1 g/L CaCl₂·2H₂O and 0.1 mL/L of a trace element mixture.

-	Divinivini		110011110 / 0	1.0011100	Di i o i , o	
	C K	4.07	9.68	364.36	7.67	0.0199
	N K	7.44	15.15	652.18	6.03	0.0419
	O K	18.19	32.46	3361.72	4.33	0.1098
	MgK	7.21	8.46	1599.65	5.36	0.0389
	S K	2.84	2.53	537.76	5.57	0.0191
	ClK	3.17	2.55	524.20	7.69	0.0207
	FeK	57.08	29.17	2390.25	3.76	0.3868

Fig. S1. Elemental composition of sludge waste-derived catalysts according to EDX analysis

Fig. S2. (a) Fe 2p; (b) Mg 1s; (c) C 1s; and (d) O 1s spectra of Fe₃O₄-MgO@C during XPS analysis

Fig. S3. MALDI-TOF spectra of (b) initial TC sample; (c) treated effluent

Fig. S4. Degradation of TC antibiotic in homogeneous BEF process (TC = 10 mg/L and pH = 7.0)

Fig. S5. Power density and voltage in (a) Fe₃O₄-MgO@C; and (b) Control BEF system

Fig. S6. Influence of current (a) TC removal; (b) H_2O_2 production; and (c) TOC removal and mineralization current efficiency in EF system

Fig. S7. AOS and COS of raw and BEF-treated wastewater representing biodegradability

Fig. S8. Removal of (a) TC and PO_4^{3-} from synthetic urine during the BEF process; (b) removal of PO_4^{3-} and NH_4^+ during precipitation; and (c) struvite yield from urine with the addition of Fe_3O_4 -MgO

Fig. S9. Schematic of BEF and co-precipitation revealing contaminant removal in each process

Parameters	Value
$COD (mg L^{-1})$	295 ± 15
pH	7.1 ± 0.2
TOC (mg L^{-1})	130 ± 10
Turbidity (NTU)	97.5 ± 6.0
$\operatorname{Cl}^{-}(\operatorname{mg} L^{-1})$	70 ± 10
Conductivity (μ S cm ⁻¹)	520 ± 20
SO_4^{2-} (mg L ⁻¹)	15.5 ± 3.0
SDS (mg L^{-1})	3.3 ± 0.1

Table S1. Characteristics of raw municipal wastewater