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Text S1. Characterization of catalyst

Electrochemical analyses, including electrochemical impedance spectroscopy (EIS), linear sweep 

voltammetry (LSV), cyclic voltammetry (CV), and Tafel analyses, were conducted using an 

electrochemical workstation (Metrohm, Switzerland). The workstation was comprised of a three-

electrode system with glassy carbon, platinum, and Ag/AgCl serving as working, counter, and 

reference electrodes, respectively. All electrochemical measurements were carried out in a 50 mM 

Na2SO4 solution at a scan rate of 0.01 mV/s. Morphological analysis of the catalyst was performed 

using scanning electron microscopy (SEM) equipment (Carl Zeiss, USA). Fourier-transform 

infrared spectroscopy (FTIR) was conducted within the wavenumber range of 400 to 4000 cm‒1 

using Thermo Fisher Scientific Instruments, USA equipment. X-ray diffraction (XRD) was 

utilized to investigate the structural characteristics and composition of the waste-derived catalyst 

and sludge. The XRD analysis involved scanning 2θ from 10 to 80° at a scanning rate of 2° min‒1 

and a step size of 0.02 using a Bruker D2 Phaser instrument from Germany.

The surface area of the composite catalyst was measured using a multipoint Brunauer–Emmett–

Teller (BET) analyser from BEL, Japan, Inc. X-ray photoelectron spectroscopy (XPS) was 

employed to determine the structural characteristics of the catalyst, utilizing equipment from 

ULVAC Physical Electronics, USA. Additionally, the magnetic properties of the waste-derived 

catalyst were analysed using a vibrating sample magnetometer (VSM) from Lake Shore 

Cryotronics, USA.

Text S2. Economic analysis 

The economics of electro-Fenton operation was aimed at assessing the real-scale capability of the 

process. It is established on the operating cost (OCtotal) needed to eliminate contaminants by unit 

order of magnitude per m3 of contaminated water, which is also recognized as OCtotal per order. 

The OCtotal includes the catalyst cost, chemical cost, and electricity cost, which were determined 

by calculating the energy consumption (W) and electrical energy per order (EEO) as per Eq. (S1) 

− Eq. (S5)
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(S1) 
𝑊 (𝑘𝑊ℎ

𝑚3 ) =
𝑈𝐼𝑇

𝑉

 (S2)

𝐸𝐸𝑂 (
𝑘𝑊ℎ

𝑚3

𝑙𝑜𝑔 ) =
𝑊

𝑙𝑜𝑔(
𝐶𝑜

𝐶
)

OCtotal   = Catalyst cost + Chemical cost + Electricity cost (S3) 

Where, U is the voltage (V), I is the imposed current (A), T is the treatment duration (h), V is the 

volume (m3), and Co and C are the initial and final concentrations of contaminants (mg/L), 

respectively.

Chemical cost ($/m3) = Electrolyte utilized (kg/m3) × cost of electrolyte ($/kg) (S4)

Electricity cost ($/m3) = EEO (kWh/m3/log) × per unit cost of electrical energy ($/kWh) (S5)

Additionally, the mineralization current efficiency (MCE%) was computed with ∆TOC (mg/L) 

using Eq. (S6)

 (S6)
𝑀𝐶𝐸 (%) =

𝑛𝐹𝑉∆𝑇𝑂𝐶 
𝐶𝑚𝐼𝑡

Where, n is the total number of electrons consumed by SDS for mineralization, t is the treatment 

duration (h), V is the wastewater volume (L), F indicates the Faraday’s constant (96485 C mol−1), 

c represents the conversion factor (4.32 × 107), and I is the external applied current (A).

Text S3: Synthetic urine 

The synthetic urine contained 1.36 g/L NaCH3COO·3H2O, 0.74 g/L KCl, 0.58 g/L NaCl, 0.68 g/L 

KH2PO4, 0.87 g/L K2HPO4, 0.28 g/L NH4Cl, 0.1 g/L MgSO4·7H2O, 0.1 g/L CaCl2·2H2O and 0.1 

mL/L of a trace element mixture.
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Fig. S1. Elemental composition of sludge waste-derived catalysts according to EDX analysis
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a b
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Fig. S2.  (a) Fe 2p; (b) Mg 1s; (c) C 1s; and (d) O 1s spectra of Fe3O4-MgO@C during XPS analysis 
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Fig. S3. MALDI-TOF spectra of (b) initial TC sample; (c) treated effluent
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Fig. S4. Degradation of TC antibiotic in homogeneous BEF process (TC = 10 mg/L and pH = 7.0)
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Fig. S5. Power density and voltage in (a) Fe3O4-MgO@C; and (b) Control BEF system
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Fig. S6. Influence of current (a) TC removal; (b) H2O2 production; and (c) TOC removal and 

mineralization current efficiency in EF system
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Fig. S7. AOS and COS of raw and BEF-treated wastewater representing biodegradability
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Fig. S8. Removal of (a) TC and PO4
3− from synthetic urine during the BEF process; (b) removal 

of PO4
3− and NH4

+ during precipitation; and (c) struvite yield from urine with the addition of 

Fe3O4-MgO
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Fig. S9. Schematic of BEF and co-precipitation revealing contaminant removal in each process
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Table S1. Characteristics of raw municipal wastewater

Parameters Value

COD (mg L−1) 295 ± 15

pH 7.1 ± 0.2

TOC (mg L−1) 130 ± 10

Turbidity (NTU) 97.5 ± 6.0

Cl− (mg L−1) 70 ± 10

Conductivity (µS cm−1) 520 ± 20

SO4
2− (mg L−1) 15.5 ± 3.0

SDS (mg L−1) 3.3 ± 0.1


