Effect of micro and nano bubble on biofilm in drinking

water distribution systems

Luo Aibao¹, WANG Tianzhi^{1,2,*}, Luo Peiyuan¹, Zhiwei Zheng⁴, Fiallos Manuel¹, Bian Yongning^{1,2}, Soon-Thiam Khu^{1,3}

1. School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China

2. Tianjin key Laboratory of Pollution Prevention- Control and Carbon Sink along land-sea waters, Tianjin 300350, China

3. Engineering Research Center of City intelligence and Digital Governance, Ministry

of Education of the People's Republic of China, Tianjin 300350, China

4. College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392,

China

*Corresponding author, E-mail: wangtianzhi@tju.edu.cn

1. Calculation of the bubble concentration in the micro-nanobubbles $C = N \frac{S_{Si} \times 1000}{M}$

 $S \times V$

Assuming that the sample is fully laid on a silicon wafer: N denotes the number of micro-nanobubbles observed under the optical microscope; S_{Si} denotes the total area of the observed sample cm²; S denotes the total area of the actual observation under the objective lens cm²; V is the volume of micro-nanobubbles water taken uL; C is the concentration of bubbles in the water (pcs/mL).

(1)

Oxy: 2.42x10⁵ MNBs/mL

Air. 1.92x10⁵ MNBs/mL

Ozo: 1.67x10⁵ MNBs/mL

Nit: 1.25×10^5 MNBs/mL

2. Fractal dimension calculation method (Posadas A N D,2003)

This paper analyzes and calculates the fractal dimension of biofilm surface structure using the Islet method. The Islet method defines the fractal dimension based on a measurement relationship and can be obtained by the Mandelbrot states [1]. It can be calculated as follows.

$$\alpha_{D}(\varepsilon) = \frac{L^{\frac{1}{D}}(\varepsilon)}{A^{\frac{1}{2}}(\varepsilon)}$$
(1)

Where L is the pore perimeter; A is the pore area; D is the fractal dimension; $\varepsilon = \eta / L_0$, where η is the absolute measurement scale and L₀ is the perimeter of the initial graph; with a fixed scale η , α_D (ε) is a constant, and α_D (ε) is only related to the chosen scale, but not to the size of the graph. Then both sides of the above equation are taken logarithmically to obtain:

$$\log L(\varepsilon) = D\log \alpha_D(\varepsilon) + \frac{D}{2}\log A(\varepsilon) + \frac{D}{2}\log A(\varepsilon)$$
(2)

Where C is a constant. The perimeter and area of each pore were measured separately in the electron microscope picture of the biofilm surface structure, and twice the slope obtained from double logarithmic plotting of area and perimeter is the value of the fractal dimension D.

Posadas A N D, Giménez D, Quiroz R, et al. Multifractal characterization of soil pore spatial distributions. Soil Science Society of America Journal. 2003, 67: 1361-1369.

	Domain	Kingdom	Phylum	Class					
OTU73	d_Bacteria	k_norank_d_B acteria	p_Proteobacteria	c_Alphaproteobacte ria					
OTU147	d_Bacteria	k_norank_d_B acteria	p_Proteobacteria	c_Alphaproteobacte ria					
OTU50	d_Bacteria	k_norank_d_B acteria	p_Bacteroidota	c_Bacteroidia					
OTU107	d_Bacteria	k_norank_d_B acteria	p_Proteobacteria	c_Gammaproteobac teria					
OTU632	d_Bacteria	k_norank_d_B acteria	p_Proteobacteria	c_Gammaproteobac teria					
	Order	Family	Genus	Species					
OTU73	Order o_Cauloba cterales	Family f_Hyphomona daceae	Genus g_SWB02	Species s_uncultured_bacter ium_g_SWB02					
OTU73 OTU147	Order o_Cauloba cterales o_Rhizobi ales	Family f_Hyphomona daceae f_Hyphomicro biaceae	Genus g_SWB02 g_Hyphomicrobiu m	Species s_uncultured_bacter ium_g_SWB02 s_unclassified_g_H yphomicrobium					
OTU73 OTU147 OTU50	Order o_Cauloba cterales o_Rhizobi ales o_Chitino phagales	Family f_Hyphomona daceae f_Hyphomicro biaceae f_Chitinophag aceae	Genus g_SWB02 g_Hyphomicrobiu m g_Terrimonas	Species s_uncultured_bacter ium_g_SWB02 s_unclassified_g_H yphomicrobium s_unclassified_g_Te rrimonas					
OTU73 OTU147 OTU50 OTU107	Order o_Cauloba cterales o_Rhizobi ales o_Chitino phagales o_Pseudo monadales	Family f_Hyphomona daceae f_Hyphomicro biaceae f_Chitinophag aceae f_Moraxellace ae	Genus g_SWB02 g_Hyphomicrobiu m g_Terrimonas g_Acinetobacter	Species s_uncultured_bacter ium_g_SWB02 s_unclassified_g_H yphomicrobium s_unclassified_g_Te rrimonas s_Acinetobacter_lw offii					

Table S1. Key strains of biofilm microbial communities under different air source conditions obtained by topological analysis

GP											
x	→	Y	Non- standardized coefficient	Standardize d coefficien	S.E.	C.R.	P				
·ОН	\rightarrow	NTU	-0.009	-0.63	0.005	-1.815	0.069*				
Size	\rightarrow	Р	0	-0.671	0	-2.025	0.043**				
NTU	\rightarrow	TOC	-3.536	-0.889	0.814	-4.342	0.000***				
TOC	\rightarrow	PS	0.264	1	0.038	6.943	0.000***				
Zeta	\rightarrow	PS	0.005	0.334	0.002	2.319	0.020**				
Р	\rightarrow	D	0.449	0.911	0.091	4.935	0.000***				
PS	\rightarrow	DW	-2.48	-0.618	1.411	-1.758	0.079*				
MP											
X	→	Y	Non- standardized coefficient	Standardize coefficient	^{ed} S.E.	C.R.	Р				
·ОН	\rightarrow	TOC	-3.778	-1.481	0.479	-7.881	0.000***				
Ace	\rightarrow	TOC	-0.335	-0.929	0.068	-4.942	0.000***				
·ОН	\rightarrow	Ace	-5.47	-0.773	2.007	-2.726	0.006***				
Chaos	\rightarrow	PS	-1.49	-0.814	0.332	-4.484	0.000***				
Ace	\rightarrow	PS	-0.001	-0.635	0	-3.497	0.000***				
TOC	\rightarrow	EC	4.896	0.834	1.447	3.383	0.001***				
PS	\rightarrow	DW	-17.332	-0.649	9.084	-1.908	0.056*				
Zeta	\rightarrow	Р	0.005	0.936	0.001	5.927	0.000***				
Size	\rightarrow	NTU	0.001	0.738	0	2.449	0.014**				
SP											
x	\rightarrow	Y	Non- standardized coefficient	Standardize d coefficien	S.E.	C.R.	Р				
·ОН	→	TOC	-3.246	-0.767	1.216	-2.67	0.008***				
·ОН	\rightarrow	Chaos	-0.004	-0.632	0.002	-1.824	0.068*				
Chaos	\rightarrow	PN	-1.023	-0.023	20.318	-0.05	0.960				
·ОН	\rightarrow	Ace	11.111	0.779	4.002	2.776	0.005***				
·ОН	\rightarrow	D	0.003	0.446	0.003	1.113	0.266				
Chaos	\rightarrow	PS	-1.635	-0.829	0.494	-3.314	0.001***				
PN	\rightarrow	DW	1.599	0.941	0.258	6.206	0.000***				
TOC	<u> </u>	NTU	-0.024	-0.952	0.003	-6.943	0.000***				
Note: ***,	**, an	nd * repre	sent 1%, 5%, a	nd 10% signi	ficance 1	evels, res	pectively.				

Table S2. Throughput analysis of different gas sources for the regulation of biofilm growth at different growth stages

Figure S1. Water quality changes under different gas conditions.

Figure S2. Micro/Nanobubble Biofilm Control Pathway

(a)									(b)									(c)										
тос	1	0.57	0.13	-0.25	-0.3	0.7	0.71	0.79	тос	1	-0.022	-0.29	0.4	0.15	0.28	0.31	-0.082	тос	1	0.0084	-0.54	0.73	0.43	0.15	0.087	-0.034	Ę	1 0.8
NTU	0.57	1	0.27	-0.25	-0.04	0.6	0.48	0.53	NTU	-0.022	1	0.06	-0.097	-0.096	0.28	0.16	0.59	NTU	0.0084	1	-0.19	-0.33	-0.61	-0.37	-0.45	-0.47	- 0	0.6
•он	0.13	0.27	1	0.086	0.45	0.23	0.32	0.19	юн	-0.29	0.06	1	-0.11	0.31	-0.43	0.11	0.25	·OH	-0.54	-0.19	1	-0.25	0.24	0.27	0.34	0.56	-	0.4
Size	-0.25	-0.25	0.086	1	0.69	0.084	0.25	-0.049	Size	0.4	-0.097	-0.11	1	0.84	0.38	0.79	0.31	Size	0.73	-0.33	-0.25	1	0.74	0.53	0.56	0.37	ŀ	0.2
Zeta	-0.3	-0.04	0.45	0.69	1	0.068	0.21	-0.11	Zeta	0.15	-0.096	0.31	0.84	1	0.22	0.73	0.4	Zeta	0.43	-0.61	0.24	0.74	1	0.61	0.68	0.52		D -0.2
тw	0.7	0.6	0.23	0.084	0.068	1	0.93	0.94	TW	0.28	0.28	-0.43	0.38	0.22	1	0.62	0.57	тw	0.15	-0.37	0.27	0.53	0.61	1	0.94	0.84	ŀ	-0.4
PN	0.71	0.48	0.32	0.25	0.21	0.93	1	0.86	PN	0.31	0.16	0.11	0.79	0.73	0.62	1	0.75	PN	0.087	-0.45	0.34	0.56	0.68	0.94	1	0.81	ŀ	-0.6
PS	0.79	0.53	0.19	-0.049	-0.11	0.94	0.86	1	PS	-0.082	0.59	0.25	0.31	0.4	0.57	0.75	1	PS	-0.034	-0.47	0.56	0.37	0.52	0.84	0.81	1	Ŀ	-0.8
	TOE	-sri	.011	Siles	Leta	C.	4 ²	4%		roc	are.	.011	SHE	Leta	14	*	47		roc	AND .	.01	She	Leta	4	27	25		-1

Figure S3. Correlation analysis of water quality-related indexes under micro-nano bubble treatment at different stages. (a) SP (b) RP (c) DP.