Supplementary Information (SI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

## SUPPLEMENTAL INFORMATION

## for

## Effect of intracellular algal organic matter and nitrate on disinfection byproduct formation in chlorinated water after UV/H<sub>2</sub>O<sub>2</sub> and UV/Cl<sub>2</sub> advanced oxidation processes

Fateme Barancheshme<sup>a</sup> Olya S. Keen<sup>a,#</sup> <sup>a</sup>University of North Carolina at Charlotte, Charlotte, NC 28223 <sup>#</sup>corresponding author: <u>okeen@uncc.edu</u>, 704-687-5048

| Table S1. Preliminary Data for Selecting the Filter |            |                |  |  |
|-----------------------------------------------------|------------|----------------|--|--|
| Type of Filter                                      | TOC (mg/L) | TN (mg/L)      |  |  |
| Ultrapure water                                     | 0.082      | Not detectable |  |  |
| Mixed cellulose ester 0.45 reagent water            | 0.049      | Not detectable |  |  |
| Nylon 0.45 reagent water                            | 1.001      | 0.235          |  |  |

Table S2. THM4 in Standard Solution

| Compound             | Compound<br>abv | CAS        | Concentration | RT (min) |
|----------------------|-----------------|------------|---------------|----------|
| Bromodichloromethane | BDCM            | (75-27-4)  | 200 µg/mL     | 11.4     |
| Bromoform            | BF              | (75-25-2)  | 200 µg/mL     | 28.6     |
| Chloroform           | CF              | (67-66-3)  | 200 µg/mL     | 8.43     |
| Dibromochloromethane | DBCM            | (124-48-1) | 200 µg/mL     | 22.3     |

## THM and HAA extraction protocol:

For THMs liquid-liquid extraction consisted of adding 3.0 mL of methyl tert-butyl ether (MTBE) and 4 g Na<sub>2</sub>SO<sub>4</sub> to 50 mL of the sample, shaking vigorously for 11 min, and then inverting for five minutes to allow water and MTBE phases to separate. After that, 1 mL of the MTBE phase was transferred to an autosampler vial, 10  $\mu$ L of 4-bromofluorobenzenewas added as an internal standard, and vials were stored at -20°C until analysis.

The liquid-liquid extraction method for HAAs consisted of transferring 40 mL of the water sample to a precleaned 60-mL glass vial with a PTFE-lined screw cap using a clean graduated cylinder for each sample, adding 2 mL concentrated sulfuric acid (97% ACS grade) and 16 g of Na<sub>2</sub>SO<sub>4</sub>, and shaking vigorously by hand until all Na<sub>2</sub>SO<sub>4</sub> was dissolved. Next, 3.0 mL of MTBE with internal standard (120 µg/L of 1,2-dibromopropane) was added to sample and the mixture was shaken vigorously for 14 min, after which the phases were allowed to separate for 5 mins. Then 2 mL of the upper MTBE layer was transferred to a 15 mL centrifuge tube, mixed with 1 mL of 15% sulfuric acid in methanol, sealed and heated in a water bath at 40°C for 160 min. After the tubes cooled to room temperature, 8.5 mL of a 129 g/L Na<sub>2</sub>SO<sub>4</sub> solution was added to each centrifuge tube, and upon separation the lower layer was discarded. Finally, 1 mL of

saturated NaHCO<sub>3</sub> solution was added, and the upper layer was transferred to an autosampler vial and stored at  $-20^{\circ}$ C until analysis.



Figure S1. GC-ECD Standard curves of THMs: (a) chloroform, (b) bromodichloromethane, (c) dibromochloromethane, and (d) bromoform

| Compound                 | Compound<br>abv | CAS          | Concentration |
|--------------------------|-----------------|--------------|---------------|
| Bromochloroacetic acid   | BCAA            | (5589-96-8)  | 400 μg/mL     |
| Bromodichloroacetic acid | BDCAA           | (71133-14-7) | 400 µg/mL     |
| Chlorodibromoacetic acid | CDBAA           | (5278-95-5)  | 1000 μg/mL    |
| Dibromoacetic acid       | DBAA            | (631-64-1)   | 200 µg/mL     |
| Dichloroacetic acid      | DCAA            | (79-43-6)    | 600 μg/mL     |
| Monobromoacetic acid     | MBAA            | (79-08-3)    | 400 µg/mL     |
| Monochloroacetic acid    | MCAA            | (79-11-8)    | 600 μg/mL     |
| Tribromoacetic acid      | TBAA            | (75-96-7)    | 2000 μg/mL    |
| Trichloroacetic acid     | TCAA            | (76-03-9)    | 200 μg/mL     |

Table S3. HAA9 in standard solution



Figure S2. GC-ECD standard curves for HAAs (continued on next page)



Figure S2. (continued) GC-ECD standard curves for HAAs

| υ | Set S4. Optimized LC-MS/MS conditions for NDWA detection |                          |                          |             |                  |  |  |
|---|----------------------------------------------------------|--------------------------|--------------------------|-------------|------------------|--|--|
|   | Compounds                                                | Parent Ion               | Product Ion              | Collision   | Cell Accelerator |  |  |
|   |                                                          | (m/z) [M+H] <sup>+</sup> | (m/z) [M+H] <sup>+</sup> | Energy (eV) | Voltage          |  |  |
|   | NDMA                                                     | 75                       | 43                       | 15          | 4                |  |  |
|   | NDMA-d6                                                  | 81                       | 46                       | 25          | 4                |  |  |
|   | NDPA-d14                                                 | 145                      | 97                       | 25          | 4                |  |  |

Table S4. Optimized LC-MS/MS conditions for NDMA detection



Figure S3. LC-MS/MS Calibration Curve for NDMA