1	Supplementary Material for the artical:
2	Ferrate-acetylacetonate system to promote the
3	degradation of sulfadimethoxine in mariculture
4	tailwater
5	
6 7 8 9	Hongwei Sun ^a , ^b , ^c , Zheng Li ^{a, b, c} , Qiankun Du ^a , ^b , ^c , Hanzhang Li ^a , ^b , ^c , Hua Su ^a , ^b , ^c , Jiamin Lin ^{a, b, c} , Yuyi Zheng ^a , ^b , ^c , Kaicong Cai ^{e, f} , Shuangcheng Jiang ^g , Changqing Liu ^b , ^c , ^d , [*] Chunshan Wu ^{a, b, c} , [*]
10 11	^a College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
12 13	^b Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350007, China
14 15 16 17	^c Fujian College and University Engineering Research Center for Municipal Waste Resourceization and Management, Fujian Industrial Energy Conser`vation and Green Development Evaluation Center, Fuzhou, Fujian, 350000, China ^d School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007
18 19 20	 ^e College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering Fujian Normal University,
21 22 23 24	Fuzhou, 350007, China ^f Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China ^g Fisheries Pesserah Institution of Fujian Xiamen 361013, China
24 25 26 27	* Corresponding author: College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China. E-mail address: csw0052@fjnu.edu.cn (C. Wu).
28 29 30 31	
32 33	Text:1
34	Figures: 3
35	Table: 3
36	

Text S1.

38 The rate constant of the reaction of Fe(VI) with SDM can be expressed as:

$$-d[Fe(VI)]/dt = k[Fe(VI)] ^{m}[SDM]^{n}$$
(1)

where [Fe(VI)] and [SDM] are the concentrations of Fe(VI) and sulfadimethoxine,
m and n are the orders of the reaction, and k is the overall reaction rate constant.

The kinetic studies were carried out under pseudo-order conditions with sulfonamide in excess i.e. [SDM] >> [Fe(VI)]. under these circumstances Equation (1) can thus be re-written under pseudo-order conditions as:

45
$$-d[Fe(VI)]/dt = k_1[Fe(VI)]^m$$
(2)

46 where
$$k_1 = k[\text{SDM}]^n$$
 (3)

47 Reactions were monitored by measuring the absorbance of Fe(VI) at
48 510 nm wavelength as a function of time. The results indicate that the reaction
49 is a first order reaction constant. Thus the reaction can be rewritten as

$$-d[Fe(VI)]/dt = k[Fe(VI)] [SDM]$$
(4)

65	Fig. S1 Effect of $[Fe(VI)]_0$: $[AA]_0$ on the degradation kinetics of SDM
66	$([SDM]_0 = 10 \ \mu\text{M}, [Fe(VI)]_0 = 200 \ \mu\text{M}, [AA]_0 = 0.200 \ \mu\text{M}, pH=9, T = 25 \ ^\circ\text{C})$
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	

Fig. S3 Effects of PMSO, TBA, HCO3⁻ and MeOH on the degradation kinetics of SDM in the Fe(VI)-AA system at a salinity background of 20 ppt ([SDM]₀ = 10 μ M, [Fe(VI)]₀ = 200 μ M, $[AA]_0 = 25 \ \mu M, \ pH = 9, \ T = 25 \ ^{\circ}C)$

Table 124

140	1	2	5
-----	---	---	---

Table.S1. Fukui index(d) of SDM

Atom index	f	\mathbf{f}^{+}	\mathbf{f}^{0}
1(C)	0.0375	0.0353	0.0364
2(C)	0.031	0.0763	0.0536
3(C)	0.041	0.0457	0.0434
4(C)	0.0185	0.0422	0.0303
5(C)	0.0352	0.0512	0.0432
6(C)	0.019	0.0686	0.0438
7(N)	0.0766	0.0502	0.0634
8(S)	0.0166	0.0447	0.0307
9(N)	0.0283	0.0151	0.0217
10(O)	0.0354	0.0417	0.0385
11(O)	0.0444	0.0448	0.0446
12(C)	0.0207	0.0346	0.0276
13(N)	0.0297	0.0217	0.0257
14(C)	0.0276	0.0184	0.023
15(N)	0.032	0.0381	0.0351
16(C)	0.0304	0.0384	0.0344
17(C)	0.0932	0.0171	0.0551
18(O)	0.0395	0.0212	0.0303
19(C)	0.0155	0.0106	0.013
20(O)	0.049	0.0135	0.0313
21(C)	0.0152	0.0088	0.012
22(H)	0.0217	0.0284	0.025
23(H)	0.0222	0.031	0.0266
24(H)	0.0143	0.0255	0.0199
25(H)	0.0146	0.0324	0.0235
26(H)	0.0281	0.0312	0.0297
27(H)	0.0283	0.03	0.0291
28(H)	0.0117	0.0096	0.0107
29(H)	0.0303	0.0136	0.0219
30(H)	0.0177	0.0138	0.0158
31(H)	0.0141	0.0094	0.0117
32(H)	0.0139	0.009	0.0115
33(H)	0.0176	0.0124	0.015
34(H)	0.0145	0.0077	0.0111
35(H)	0.0148	0.008	0.0114

127 Table.S2. The LC/MS data of SDM and main intermediates produced in the Fe(VI)-AA

process.

Produce	Chemical	Rt(min)	Theoretical	Detected	Mass
	Formula		Mass m/z	Mass m/z	error
					(ppm)
SDM	$C_{12}H_{14}N_4O_4S$	11.75	311.08085	311.08032	-1.7
P1	$C_5H_7N_3O_2$	2.24	142.06110	142.06078	-2.2
P2	$C_{11}H_{12}N_4O_2$	12.76	233.10330	233.10448	5.0
P3	$C_6H_9N_3O_2$	2.14	156.07675	156.07638	-2.3
P4	$C_{12}H_{14}N_4O_2$	7.35	247.11895	247.11806	-3.6
P5	$C_{12}H_{14}N_4O_5S$	11.56	327.07576	327.07516	-1.8
P6	$C_{12}H_{12}N_4O_7S$	13.75	357.04994	357.04898	-2.6
P7	$C_6H_9N_3O_5S$	2.09	236.03356	236.03316	-1.6
P8	$C_{12}H_{12}N_4O_5S$	9.55	325.06011	325.05963	-1.4
Р9	C ₆ H ₇ NO	11.71	110.06004	110.06014	0.9
P10	C ₆ H ₇ NO ₃ S	2.04	174.02194	174.02145	-2.8

]	ECOSAR			
	Acute toxicitty(mg/l)			Chronic toxicitty(mg/l)		
Compound	Fish(96- hr-LC50)	DapHnid(48- hr-LC50)	Green algae(96-hr- EC50)	Fish	DapHnid	Green algae
SDM	1410	739	402	126	58.3	88.8
P1	3630	10400	6970	296	112	130
P2	856	455	257	77.3	36.8	57.9
P3	2630	1310	557	220	87.5	108
P4	631	340	206	58.1	28.8	48.1
P5	3990	2010	909	338	140	182
P6	1650	866	469	147	68.1	103
P7	7020000	2490000	267000	395000	65900	24600
P8	583	320	208	54.8	28.5	50.7
Р9	1640	816	355	137	55.5	69.7
P10	6590000	2570000	403000	413000	87700	45600
	Not ha	ırmful		Harmful		
	Toz	xic		Very toxi	c	
149						
150						
151						
152						
153						
154						
156						
157						
158						
159						
160						
161						
162						
163						
164						
165						
166						