Supplementary Information

Efficient extraction of polystyrene nano plastics from water via Ionic Liquid

Ashish Srivastava¹, Sudhir Ravula¹, Jason E. Bara¹, Milad Rabbani Esfahani^{1*}

Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, United States.

> *Corresponding Author: Milad Rabbani Esfahani <u>mesfahani@eng.ua.edu</u> Phone# 205-348-8836

Figure S1. The schematic represent the synthesis of the $[C_8C_1Im][Tf_2N]$ via multistep procedure steps including **1**) The reaction of 1-bromooctane with 1-methylimidazole at 80° C for 48 h **2**) the Concentrating process at 10 torr for complete removal of acetonitrile, **3**) A liquid-liquid extraction procedure with ethyl acetate serving as the extracting solvent, **4**) The organic phase subjected to vacuum drying to effectively remove residual solvents, **5**) Initiation of the metathesis reaction by introducing lithium bistriflimide (LiTf₂N), **6**) The organic solution containing dichloromethane (DCM) undergoing a series of water washes, for ten times, **7**) Purification to remove impurities by activated carbon and then with alumina bed column; **8**) A concentration process ensuring the removal of any remaining solvent trace.

Table S1. Total Organic Carbon (TOC) and conductivity of Lake Tuscaloosa water changes with the addition of $[C_8C_1Im]$ [Tf₂N]

	Conductivity (before extraction)	Conductivity (after extraction)	TOC after extraction (ppm)
DI water	2.71	-	
Lake Tuscaloosa water sample	65.01	-	3.40±0.99
CPS	68.41	153.1	3.99 ± 0.14
PS-SDS	223.1	267.3	3.56 ± 0.63
PS-PVP	68.79	223.1	3.40 ± 0.58

