Supplementary Information (SI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2025

Supplementary material

Improvement of sludge dewatering by calcium peroxide activated with pyrite:

performances, mechanisms and implications

Jinyun Chen¹, Xiaoshuang Liu¹, Ziheng Dai^{1,2}, Lei Liu³, Yuhan Fan¹, Weiqi Liu⁴,

Liguo Zhang^{1,5*}

1 School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and

Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment,

Guangdong Provincial Engineering Technology Research Center for Wastewater Management and

Treatment, South China Normal University, Guangzhou 510006, China

2 Guangdong International Engineering Consultant Co., Ltd, Guangzhou 510060, China

3 School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan,

523808, China

4 International Department, The Affiliated High School of South China Normal University,

Guangzhou, 510006, PR China.

5 Institute of Science and Technology Innovation Co., Ltd., South China Normal University,

Qingyuan 511517, China

*Corresponding author: Liguo Zhang

E-mail address: zhanglg@scnu.edu.cn

Text S1 The method of EPS extraction and analysis

In this study, a heat extraction method was modified to extract EPS. Firstly, 30mL sludge sample was placed in centrifuge tube, after centrifuged at 4000g for 5min, the centrifugal supernatant was stored as S-EPS. The precipitate was resuspended into 10mL of 0.05% NaCl solution, afterwards, the sludge mixture was diluted with the NaCl solution to 30mL. The NaCl solution for dilution was pre-heated to 70°C. The 30mL sludge mixture was sheared by a vortex mixer for 1min immediately, then the mixture was centrifuged at 4000g for 10 min, the supernatant was collected as LB-EPS extraction of sludge. After LB-EPS extraction, the sludge pellet left was resuspended in 0.05% NaCl solution to 30mL. The sludge suspension was heated to 60°C in a water bath for 30min, and the sludge mixture was then centrifuged at 4000g for 15min. The supernatant that was collected as the TB-EPS extraction of the sludge.

Text S2 Bound water content measurement

In this experiment, 30 mL sludge samples were centrifuged at 1057g for 10 min, and then the sludge at the bottom was collected. The water content of sludge samples collected in the previous step was measured by drying at 105°C overnight, and this water content was defined as bound water content. Text S3 The analysis method of protein secondary structure

In this study, the protein secondary structure was divided into four types, α -helix, β -sheet, β -turn and random coil. The content of each secondary structure in sludge samples were calculated by the peak area of infrared amide I region (1600-1700cm⁻¹). The contents of α -helix, random coil, β -sheet and β -turn were calculated by the peak integral of amide I region in FTIR spectrum.

Conditioning scheme	Pyrite dose	Pyrite dose CaO ₂ dose	
	(mg/g TS)	(mg/g TS)	(h)
РҮ	32.61	0	1
A30	0	30.00	1
A100	0	100.00	1
B30	32.61	30.00	1
B100	32.61	100.00	1

Table S1	Conditioning	noromators of	CoO /marito	annacita	anditioning
Table SI	Conditioning	parameters or	CaO ₂ /pyrite	composite o	Jonannonning

	Ex	Em	Type of substance
Peak A	280	360	tyrosine & like substances
Peak B	220	360	Aromatic protein II

Table S2 Wavelength and type of peaks in 3D-EEM

Wave number (cm ⁻¹)	functional group
990, 1074~1102	C-O
1401~1409	C=C
1640	C=O
2420/2968/3144	С-Н
3437~3434	О-Н

Table S3 The information of peaks in FTIR spectral peak

	amide I region			
Protein secondary Structure	α-helix	β-sheet	β-turn	random coil
Wavenumber (cm ⁻¹)	1646-1664	1615-1637/	1664-1681	1637-1645
		1682-1700		

Table S4 The wavenumber of protein secondary structure in amide I region

Fig.S1 The EPR results of CaO₂ activated by pyrite

Fig.S2 The contents of (a) protein and (b) polysaccharide in EPS of samples conditioned by

different conditioning schemes

Fig.S3 FTIR results of (a) S-EPS, (b) LB-EPS and (c) TB-EPS conditioned by different

conditioning schemes

Fig.S4 FTIR peak integration results of (a) S-EPS, (b) LB-EPS and (c) TB-EPS conditioned

by different conditioning schemes

Fig.S5 Particle size distribution of sludge samples conditioned by (a) CaO2 and (b) pyrite.

Fig.S6 SEM of RS and sludge samples conditioned by different schemes