Electronic Supporting Information (ESI)

Structural Selectivity of Supported Pd Nanoparticles: Selective Ethanol Ammoxidation to Acetonitrile

Khaled Mohammed^a, Reza Vakili^{b,c}, Donato Decarolis^{d,e}, Shaojun Xu^{d,f}, Luke Keenan^e, Apostolos Kordatos^a, Nikolay Zhelev^a, Chris K. Skylaris^a, Marina Carravetta^a, Emma K. Gibson^{d,g}, Haresh Manyar^b, Alexandre Goguet^b and Peter P. Wells^{a,d,e,*}

- ^{b.} School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Rd, Belfast BT9 5AG, UK.
- ^c Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
- d. UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxon, Didcot, OX11 0FA, UK.
- e. Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, Oxfordshire, United Kingdom.
- ^f Department of Chemistry, the University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Peter P Wells: P.P.Wells@soton.ac.uk

^{a.} School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.

^{g.} School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.; UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Lab, Harwell, Oxfordshire OX11 0FA, U.K.

1. XAS measurements

Figure S1. Normalized XANES spectra at the Pd K-edge, captured at various positions along the catalyst bed during ethanol ammoxidation. Measurements were conducted isothermally across a temperature range of 100–300 °C, as indicated.

Figure S2. Magnified view of the XANES spectra (100 – 140 °C) focusing on specific regions to detect potential signatures of $PdN_x PdC_x$ phases that may emerge during the reaction.

Figure S3. Magnified view of the XANES spectra (140 – 180 °C) focusing on specific regions to detect potential signatures of $PdN_x PdC_x$ phases that may emerge during the reaction.

Figure S4. Magnified view of the XANES spectra (180 – 220 °C) focusing on specific regions to detect potential signatures of $PdN_x PdC_x$ phases that may emerge during the reaction.

Figure S5. Magnified view of the XANES spectra (220 – 260 °C) focusing on specific regions to detect potential signatures of $PdN_x PdC_x$ phases that may emerge during the reaction.

Figure S6. Magnified view of the XANES spectra (260 – 300 °C) focusing on specific regions to detect potential signatures of $PdN_x PdC_x$ phases that may emerge during the reaction.

Figure S7. 3D contour plots at various temperatures, as indicated, derived from the spectra showcased in Figures S2-S6, to trace any variations along the catalyst bed.

2. Ex situ XAFS data

Figure S8. Comparative analysis of Pd K-edge XAFS spectra: (a) Normalized spectra, (b) Corresponding Fourier transform, and (c) k^2 -weighted $\chi(k)$ data for PdNx, PdCx, and the catalyst post-use at 150°C.

a) Used catalyst at 150C: r space (left), k² weight (right)

b) PdN_x: r space (left), k² weight (right)

c) PdC_x: r space (left), k² weight (right)

Figure S9. Ex-situ Pd K-edge EXAFS spectra and their corresponding fits (non-phase corrected) in Fourier-Transformed (left) and k^2 -weighted (right) space of 1.5wt% Pd/ γ -Al₂O₃ samples: a) used at 150°C, b) PdN_x phase, and c) PdC_x phase.

Table S1. EXAFS fitting parameters for the Pd K-edge spectra of 1.5 wt% Pd/Al₂O₃ catalyst used at 150°C, alongside the nitridised (PdN_x) and carbidised (PdC_x) samples.

Sample	CN (Pd-Pd)	sigma ²	E ₀ (eV)	R (Å)	R factor
used at 150C	6.2 (1.1)	0.0068 (16)	-6.3(1.7)	2.778(10)	0.034
PdNx	7.6(1.6)	0.0084 (15)	-6.2(1.6)	2.789(10)	0.121
PdCx	7.9(1.1)	0.0071(7)	-5.9(0.8)	2.799(5)	0.009

* Fitted from one scattering path of the absorbing Pd atom to the nearest neighbour Pd atoms (Pd-Pd), using $SO^2 = 0.8$ as determined using a Pd foil standard; Fit range $3 < k (Å^{-2}) < 11.9$, 1 < R / Å < 3.

3. SEM Characterisation

Figure S10. SEM images of fresh (Figure S10a and b) and spent – i.e., post ammoxidation - (Figure S10c and d) 1.5wt% Pd/ γ -Al₂O₃ catalyst.

Figure S11. 30 μL injection of ethanol in an empty to trace any fragments of m/z = Traces of m/z = 2, 17, 18, 28, 31, 32, 41, and 44. Injection was performed 3 times.

Figure S12. Same data presented in Figure S10 above but here we show only traces of m/z = 17 and 18 when 30 μ L of ethanol was injected in an empty. Injection was performed 3 times with an average m/z(17/18) ratio of 0.288.

Figure S13. Traces of m/z = 41 and 44 when 30 μ L of acetaldehyde was injected in an empty. Injection was performed 2 times with an average of m/z (41/44) ratio of 0.091.