Electronic supplementary information

Bridging the structural gap of supported vanadium oxides for oxidative

dehydrogenation of propane with carbon dioxide

Li Wang^{a, b}, Heng-Bo Zhang^a, Rong-Rong Hu^a, Han-Qing Ge^a, Yong-Hong Song^a, Guo-Qing Yang^{a,*}, Yuefeng Li^b, Zhao-Tie Liu^a, Zhong-Wen Liu^{a,*}

^a Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China

^b Kaili Catalyst & New Materials Co., Ltd., Xi'an 710201, China

*: Corresponding author (G.-Q. Yang; Z.-W. Liu)

No. 620, West Chang'an Avenue

School of Chemistry & Chemical Engineering

Shaanxi Normal University

Xi'an 710119, China

E-mail: gqyang@snnu.edu.cn (G.-Q. Yang); zwliu@snnu.edu.cn (Z.-W. Liu)

Table of Contents

1. Carbon balances of CO ₂ -ODP
2. N ₂ adsorption/desorption isotherms of different catalysts
3. Calculations of the adsorption edge energy from UV-vis DRS
4. V 2p XP spectra of fresh catalyst
5. Time-on-stream catalytic results7
6. Relative deactivation rate of the catalysts
7. Relationship between TOF(CO ₂) and Eg over the catalysts9
8. CO ₂ pulse experiment for the SiO ₂ support10
9. TG results of spent catalysts
10. Raman results of spent catalysts
11. Correlation of the relative deactivation rate with the V oxidation state of the spent catalysts13
12. Estimation of the internal and external diffusion limitations14

1. Carbon balances of CO₂-ODP

Fig. S1 Carbon balances of CO_2 -ODP over the catalysts with increasing TOS (The reaction conditions are the same as those given in Fig. 2).

2. N_2 adsorption/desorption isotherms of different catalysts

Fig. S2 N_2 adsorption/desorption isotherms (a) and pore size distributions determined by the BJH method (b) for the catalysts.

3. Calculations of the adsorption edge energy from UV-vis DRS

Fig. S3 Absorption edge energy determined via UV-vis DRS of the catalysts.

4. V 2p XP spectra of fresh catalyst

Fig. S4 V 2p XP spectra of the fresh catalysts.

5. Time-on-stream catalytic results

Fig. S5 Time-on-stream conversions of C_3H_8 (a) and CO_2 (b) catalyzed by $4VO_x$ -SiO₂-H, $6VO_x$ -SiO₂-H, $6VO_x$ /SiO₂-I and $6VO_x$ /SiO₂-P (The reaction conditions are the same as those given in Fig. 2).

6. Relative deactivation rate of the catalysts

Fig. S6 Relative deactivation rate of the catalysts calculated based on CO_2 conversion (R_{CO2}) for CO_2 -ODP (The reaction conditions are the same as those given in Fig. 2).

7. Relationship between TOF(CO₂) and Eg over the catalysts

Fig. S7 Relationship between $TOF(CO_2)$ and Eg derived from UV-vis DRS of the catalysts.

8. CO₂ pulse experiment for the SiO_2 support

Fig. S8 Transient MS response of the consecutive CO₂ pulses over the inert SiO₂ at 600 °C.

9. TG results of spent catalysts

Fig. S9 TG patterns of the spent catalysts for CO_2 -ODP after a TOS of 128 min (The reaction conditions are the same as those given in Fig. 2, and the weight loss at 200-450 °C is assigned to the burning of deposited coke species).

10. Raman results of spent catalysts

Fig. S10 Visible Raman spectra of the spent catalyst for CO_2 -ODP after a TOS of 128 min (The reaction conditions are the same as those given in Fig. 2).

11. Correlation of the relative deactivation rate with the V oxidation state of the spent catalysts

Fig. S11 Correlation of the relative deactivation rate with the content of V^{5+} and V^{3+} species over the spent catalysts, respectively.

12. Estimation of the internal and external diffusion limitations

The internal and external diffusion limitations for CO₂-ODP are evaluated for the highest initial propane conversion of 41.0% at a TOS of 8 min over the $6VO_x$ -SiO₂-H catalyst (Fig. 2a) under the reaction conditions of 600°C, 0.1 MPa, $Ar/C_3H_8/CO_2$ molar ratio = 3/2/27, total flow rate = 32 mL/min, and GHSV = 7680 mL·g⁻¹·h⁻¹., and the catalyst particle size = 0.25-0.42 mm (40-60 mesh).

The potential mass transport limitations are estimated by using the Weisz-Prater criterion (C_{WP}) for the internal diffusion limitation (equation S1) and the Mears' criterion (C_{MM}) for the external diffusion resistance (equation S2). According to references, the effect of the internal and external diffusions on the catalytic reaction is negligible if

$$C_{WP} = \frac{-r_{obs}\rho_c R_p^2}{D_e C_s} < 1$$
 S1

$$C_{MM} = \frac{-r_{obs}\rho_b R_p n}{k_c C_{Ab}} < 0.13$$

Where r_{obs} is observed reaction rate (mol/kg_{cat}/s); ρ_c is density of solid catalyst (kg/m³); R_p is catalyst particle radius (m); D_e is effective gas-phase diffusivity (m²/s); C_s is gas concentration of A at the external surface of the catalyst (mol/m³); ρ_b is bulk density of catalyst bed (kg/m³) = (1- Φ) ρ_c (Φ = porosity); n is reaction order; k_c is external mass transfer coefficient (m/s); C_{Ab} is bulk gas concentration of A (mol/m³).

The D_e is calculated by the empirical formula (equation S3). The ${}^{D_{C_{3}H_{8}}-CO_{2}}$ (binary gasphase diffusivity) containing in equation S3 is calculated by the Chapman-Enskog empirical formula (equation S4). The collision integral ${}^{\Omega_{C_{3}H_{8}}-CO_{2}}$ containing in equation S4 was calculated from the equation S5, which is the functional relationship of collision integral ${}^{\Omega_{C_{3}H_{8}}-CO_{2}}$ and ${}^{k_{B}T}/{}^{\epsilon_{CO}-H_{2}}$ has a key in D key set of the transformation of the equation of

 ${}^{k_{\rm B}T}/{}^{\epsilon_{\rm CO-H_2}}$, where ${}^{k_{\rm B}}$ is Boltzmann constant and T is reaction temperature. The physical parameters σ and ϵ containing in equations S4 and S5 derived from the Lennard-Jones potential energy function, are determined by the equations S6 and S7, respectively, where ${}^{\sigma_{C_3H_8}} = 5.118$ Å,

$$\sigma_{CO_2} = 3.941 \text{ Å}, \ \epsilon^{\epsilon}/k_{B(C_3H_8)} = \frac{\epsilon}{237.1 \text{ K}^{-1}}, \ \epsilon^{\epsilon}/k_{B(CO_2)} = \frac{195.2 \text{ K}^{-1}}{195.2 \text{ K}^{-1}}.$$
 The D_{Ki} (Knudsen diffusivity)

is calculated by the empirical formula (equation S8), where M_i and a are molar mass of reaction gas i, and the average pore radius of the catalyst determined from the N_2 adsorption-desorption isotherms (Fig. S2b), respectively.

$$D_{e} = \frac{1}{\frac{1}{D_{C_{3}H_{8}} - CO_{2}} + \frac{1}{D}}$$
S3

$$D_{C_{3}H_{8}-CO_{2}} = 0.001858T^{\frac{3}{2}} \frac{(\frac{1}{M_{C_{3}H_{8}}} + \frac{1}{N})}{P\sigma_{C_{3}H_{8}^{-}-CO_{2}}\Omega_{C}}$$

$$\Omega_{C_{3}H_{8}-CO_{2}} = \frac{1}{\left(T/\epsilon_{C_{3}H_{8}-CO_{2}}\right)^{0.145}} + \frac{1}{\left(T/\epsilon_{C_{3}H_{8}-CO_{2}}\right)^{0.145}}$$
S5

$$\sigma_{C_{3}H_{8}} - CO_{2} = \frac{1}{2} \left(\sigma_{C_{3}H_{8}} + \sigma_{CO_{2}} \right) = 4.$$
 S6

$$\varepsilon_{C_{3}H_{8}-CO_{2}} = (\varepsilon_{C_{3}H_{8}}\varepsilon_{CO_{2}})^{\frac{1}{2}} = 21$$
: S7

$$D_{Ki} = 9700a(T/M_i)^{\frac{1}{2}}$$
 S8

The external mass transfer coefficient (k_c , m/s) of binary reaction gases from the bulk flow to the catalyst surface is calculated according to equation S9, which is derived from the mass-transfer correlation given in equation S10.

$$k_{c} = \frac{A D_{C_{3}H_{8}} - CO_{2} (\frac{\rho_{g}Ud_{p}}{\mu \Phi})^{1/2} (\frac{\mu}{\rho_{g}D_{C_{3}H_{8}} - C})}{d_{p}}$$
 S9

Sh = A (Re^{1/2})(Sc^{1/3}), Sh =
$$\frac{k_c d_p}{D_{C_3 H_8 - CO_2}}$$
, Re = $\frac{\rho_g U d_p}{\mu \Phi}$, Sc = $\frac{\rho_g D_q}{\rho_g D_q}$ S10

where A is a dimensionless constant of 2.6 with the assumption of homogeneous spherical catalyst particles at 40-60 mesh, U is the superficial velocity (m/s), μ is the dynamic viscosity (kg/m/s) of binary reaction gases, d_p is the average diameter of the catalyst particle (m), and ρ_g is the density of the binary reaction gases (kg/m³). The values for the parameters are determined and given in Table S1.

Symbol	Interpretation	Unit	Value
r _{obs}	Observed reaction rate	mol·kg _{cat} ⁻¹ ·s ⁻¹	3.67×10 ⁻³
n	Reaction order		1
R _p	Particle radius of the catalyst	m	1.70×10 ⁻⁴
$ ho_c$	Bulk density of the catalyst	kg/m ³	647.96
$ ho_b$	Bulk density of the catalyst bed	kg/m ³	473.92
Φ	Porosity	0⁄0	0.54
a	Average pore radius of the catalyst	m	3.70×10-9
D _e	Effective diffusivity	$m^2 \cdot s^{-1}$	8.13×10 ⁻⁶
Cs	Gas concentration of A at the external	mol·m ⁻³	54.82
	surface of the catalyst		
C_{Ab}	Bulk gas concentration of A	mol⋅m ⁻³	54.82
k _c	External mass transfer coefficient	m·s ⁻¹	1.91×10 ⁻³
А	A dimensionless constant		2.60
U	Superficial velocity	$m \cdot s^{-1}$	0.25
μ	Dynamic viscosity	kg·m ⁻¹ ·s ⁻¹	3.13×10 ⁻⁵
d _p	Average diameter of the catalyst particle	m	3.40×10 ⁻⁴
$ ho_{g}$	Density of the reaction gas	kg⋅m ⁻³	0.83
$D_{C_3H_8-CO_2}$	Binary gas-phase diffusivity	$m^2 \cdot s^{-1}$	8.11×10 ⁻⁶
D _{ki}	Knudsen diffusivity	$m^2 \cdot s^{-1}$	1.60×10 ⁻⁴

Table S1 The interpretation, unit and calculated result of the parameters relating to Weisz-Prater

 and Mears' criterion equations.

The substitution of the values for the parameters into the C_{WP} and C_{MM} equations leads to

$$C_{WP} = \frac{-r_{obs}\rho_{c}R_{p}^{2}}{D_{e}C_{s}}$$

$$= \frac{\left[\left(3.67 \times 10^{-3} \text{ mol} \cdot \text{kg}_{cat}^{-1}\text{s}^{-1}\right) \times (647.96 \text{ kg} \cdot \text{m}^{-3}) \times (1.70 \times 10^{-4} \text{ m})^{2}\right]}{\left[\left(8.13 \times 10^{-6} \text{ m}^{2} \cdot \text{s}^{-1}\right) \times (54.82 \text{ mol} \cdot \text{m}^{-3})\right]}$$

$$= 1.54 \times 10^{-3} < 1$$

$$C_{MM} = \frac{-r_{obs}\rho_{b}R_{p}n}{k_{c}C_{Ab}}$$
$$= \left[\frac{\left(3.67 \times 10^{-3} \text{ mol} \cdot \text{kg}_{ca}^{-1} \cdot \text{s}^{-1}\right) \times (473.92 \text{ kg} \cdot \text{m}^{-3}) \times (1.70 \times 10^{-4} \text{ m}) \times 1}{(1.91 \times 10^{-3} \text{ m} \cdot \text{s}^{-1}) \times (54.82 \text{ mol} \cdot \text{m}^{-3})}\right]$$
$$= 2.82 \times 10^{-3} < 0.15$$

Thus, the internal and external diffusion limitations are negligible over the VO_x -SiO₂ catalysts for CO₂-ODP.