Supporting information

Cations Distribution: A Descriptor for Hydrogen Evolution Electrocatalysis on Transition-Metal Spinels

*Aya K. Gomaa^a , Maram G. Zonkol^a , Ghada E. Khedr,b , Nageh K. Allam^a**

^aEnergy Materials Laboratory, Physics Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt

^bDepartment of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo 11727, Egypt

*Corresponding Author's email: [nageh.allam@aucegypt.edu](mailto:%20nageh.allam@aucegypt.edu)

Contents

- FE calculations.
- TOF calculations.
- **Figure S1.** XRD spectrum of CoFe₂O₄ powder at different pH.
- **Figure S2.** Full spectrum FTIR of CoFe₂O₄ powder at different pH.
- Figure S3. XPS spectrum of CoFe₂O₄/Ni foam. High resolution spectra of Ni 2p and O 1s.
- **Figure S4.** iR-corrected LSV at different scan rates (2, 5, 10 mV/s) for pH 9 sample.
- Figure S5. CV scan of CoFe₂O₄/Ni foam at pH 12.5 and pH 13.
- **Figure S6.** SEM image of the sample before and after stability.
- **Figure** S7. EDS of CoFe₂O₄/ Ni foam catalyst prepared at pH 9 before CP stability test for continuous electrolysis.
- **Figure S8.** EDS of CoFe_2O_4 / Ni foam catalyst prepared at pH 9 after CP stability test for continuous electrolysis.
- **Figure S9.** PDOS for a) CFOi and b) CFOdis0.2.
- **Figure S10.** HER free energy diagram for catalysts without Ni foam
- **Table S1.** The electrocatalytic activity of our catalyst compared to those recently reported in the literature.
- **Table S2.** The current densities normalized to ESCA at different potential values for pH 9,

12.5, 13 respectively.

Faradaic efficiency (FE) calculations:

To measure the faradaic efficiency of the hydrogen produced from $\text{CoFe}_2\text{O}_4\text{/Ni}$ foam, water displacement method was applied. Chronopotentiometry was performed at a current density of 20 mA/cm² for 1h. The amount of hydrogen and oxygen produced was collected and measured via an inverted 10ml measuring cylinder in a sink of water.

Following the amount of hydrogen produced was calculated theoretically and experimentally to calculate the FE using the following equations.

Amount of hydrogen theoretically:

- The number of electrons used to produce hydrogen $=$ Q applied at certain time/ Faraday's constant.
- Every one mole of H_2 produced 2e⁻ are required.
- No. of moles of hydrogen produced $(n) = No$. of electrons /2.

Amount of hydrogen experimentally:

- No of moles of hydrogen produced = amount of the displaced volume of water (L) / 22.4

 $\%$ $\rm FE = ~\it No.$ of moles of Hydrogen produced theoretically No. of moles of Hydrogen produced experimentaly
 $\frac{1}{2}$ + 100

Turnover frequency (TOF) calculations:

TOF of the electrocatalyst is a critical kinetic parameter that indicates the speed at which an electrocatalyst can catalyze a specific electrochemical reaction. TOFs for both HER and OER mechanisms can be calculated per unit time using the following formula, based on the pseudofirst-order kinetics, as reported in previous studies.

$$
TOF = \frac{jN_A}{nF\Gamma}
$$

where j is the current density (mA/cm²) measured, N_A is the Avogadro number, F is Faraday constant (96485), n is the number of electrons transferred (which is for HER=2, and OER= 4), and Γ is the moles of the surface-active sites included within the used catalyst.

Therefore, the total number of H_2 produced per geometric area was calculated from the current density value extracted from the HER-LSV polarization curve as the following:

$$
\# H_2 = |J| (mA/cm^2) * (1000 mA)^4 * (1000 mA)^5 * (1000 mA)^6 + (1000 mA)^6 * (1000 mA)^6 + (1000 mA)^6 * (1000 A)^6 * (1000 A)^7 * (1000 A
$$

Since the total number of active sites are not precisely determined the exact number of binding sites for H² are not determined exactly. We calculated the total number of active sites as the total number of the surface sites from the unit cell of the catalyst $(CoFe₂O₄)$ which could possibly underestimate the real TOF values.

From the crystal structure of CoFe₂O₄, we can calculate the number of active sites according to following equations:

Surface sites =
$$
\frac{(56 \text{ atoms per unit cell})^{\frac{3}{2}}}{602.58 \text{ Å}^3 \text{ per unit cell}}\bigg)^{\frac{3}{2}}
$$

 $\mathrm{TOF}_{\mathrm{HER}}$ = # Surf ace active sites $*$ A (ECSA) = $3.15 * 10^{15} * |J|$ # Surf ace active sites \ast A (ECSA) $_{2}$ $3.15 * 10^{15} * |J|$ $2.05 * 10^{15} * 241.5$

Figure S1. XRD spectrum of CoFe₂O₄ powder prepared at pH (a) 9, (b) 12.5 and (c) 13. The peak at 32.5° in (b) is assigned to hematite (104).

Figure S2. Full FTIR spectrum of CoFe₂O₄ powder prepared at pH (a) 9, (b) 12.5, and (c) 13.

Figure S3. XPS spectrum of CoFe₂O₄/Ni foam. (a) Ni 2p. (b) O 1s for pH 9 sample and (c) Ni 2p, and (d) O 1s for pH 13 sample.

Figure S4. iR-corrected LSV at different scan rates (2, 5, 10 mV/s) for pH 9 sample

Figure S5. Determination of ECSA for CoFe₂O₄/Ni foam prepared at different pHs. CV scans at different scan rates (20 -100 mV s⁻¹) in 1 M KOH for the catalysts prepared at a) pH 9, b) pH 12.5, and c) pH 13.

Figure S6. SEM of CoFe₂O₄/ Ni foam catalyst prepared at pH 9 before and after CP stability test for 44 h of continuous electrolysis.

Figure S7. EDS of CoFe₂O₄/ Ni foam catalyst prepared at pH 9 before CP stability test for continuous electrolysis.

Figure S8. EDS of CoFe₂O₄/ Ni foam catalyst prepared at pH 9 after CP stability test for continuous electrolysis.

Figure S10. HER free energy diagram for catalysts without Ni foam.

Table S1. The electrocatalytic activity of our catalyst compared to those recently reported in the

literature.

Catalyst	Overpotential (mV) $@$ - 10mA/cm ²	Tafel slope (mV dec^{-1}	Ref.
CoFe ₂ O ₄ /Ni Foam $(\delta = 0.33)$	66	67	This Work
CoNi/CoFe ₂ O ₄ /Ni foam	82	96	$\mathbf{1}$
$Co3O4 - 800/GC$	93	122.1	$\overline{2}$
$NiFe-oFe2O4@Co3S4/CFP$	98	78.2	3
Ti_3C_2 -CoFe ₂ O ₄ /g-C ₃ N ₄	223	48.5	4
$CoNiFe2O4 + Sex$	173.5	91	5
$CoFe2O4$ - graphene	248.3	116.6	6
$NiFe2O4$ - graphene	259	121.4	6
$FeSe2/CoFe2O4$	231	88.76	7
CoFe ₂ O ₄ ED@NF	270	94	8
$CoFe2O4/$ SWNTs	263	46	9
$Ag@CoFe2O4/g-C3N4$	259	76.1	10

Table S2. The current densities normalized to ESCA at different potential values for pH 9, 12.5,

13, respectively.

References

- 1. Suharyana, R. R. Febriani, N. P. Prasetya, Utari, N. A. Wibowo, Suharno, A. Supriyanto, A. H. Ramelan and B. Purnama, *Kuwait J. Sci.*, 2023, **50**, 575–579.
- 2. C. Xiao, Y. Li, X. Lu and C. Zhao, *Adv. Funct. Mater.*, 2016, **26**, 3515–3523.
- 3. S. Li, S. Sirisomboonchai, A. Yoshida, X. An, X. Hao, A. Abudula and G. Guan, *J. Mater.*

Chem. A, 2018, **6**, 19221–19230.

- 4. X. Hu, X. Tian, Y.-W. Lin and Z. Wang, *RSC Adv.*, 2019, **9**, 31563–31571.
- 5. S. Riyajuddin, K. Azmi, M. Pahuja, S. Kumar, T. Maruyama, C. Bera and K. Ghosh, *ACS Nano*, 2021, 15, 3, 5586–5599.
- 6. F. Bao, E. Kemppainen, I. Dorbandt, R. Bors, F. Xi, R. Schlatmann, R. van de Krol and S. Calnan, *ChemElectroChem*, 2021, **8**, 195–208.
- 7. L. Huang, Y. Hou, Z. Yu, Z. Peng, L. Wang, J. Huang, B. Zhang, L. Qian, L. Wu and Z. Li, *Int. J. Hydrogen Energy*, 2017, **42**, 9458–9466.
- 8. S. I. Perez Bakovic, P. Acharya, M. Watkins, H. Thornton, S. Hou and L. F. Greenlee, *J. Catal.*, 2021, **394**, 104–112.
- 9. S. Anantharaj and S. Noda, *ChemElectroChem*, 2020, **7**, 2297–2308.
- 10. Y. Zhu, H. A. Tahini, Z. Hu, J. Dai, Y. Chen, H. Sun, W. Zhou, M. Liu, S. C. Smith, H. Wang and Z. Shao, *Nat. Commun.*, 2019, **10**, 149