Supporting information

Cations Distribution: A Descriptor for Hydrogen Evolution Electrocatalysis on Transition-Metal Spinels

Aya K. Gomaa^a, Maram G. Zonkol^a, Ghada E. Khedr^b, Nageh K. Allam^a*

^aEnergy Materials Laboratory, Physics Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt

^bDepartment of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo 11727, Egypt

*Corresponding Author's email: <u>nageh.allam@aucegypt.edu</u>

Contents

- FE calculations.
- TOF calculations.
- **Figure S1.** XRD spectrum of CoFe₂O₄ powder at different pH.
- **Figure S2.** Full spectrum FTIR of CoFe₂O₄ powder at different pH.
- Figure S3. XPS spectrum of CoFe₂O₄/Ni foam. High resolution spectra of Ni 2p and O 1s.
- Figure S4. iR-corrected LSV at different scan rates (2, 5, 10 mV/s) for pH 9 sample.
- **Figure S5.** CV scan of CoFe₂O₄/Ni foam at pH 12.5 and pH 13.
- Figure S6. SEM image of the sample before and after stability.
- Figure S7. EDS of CoFe₂O₄/ Ni foam catalyst prepared at pH 9 before CP stability test for continuous electrolysis.
- Figure S8. EDS of CoFe₂O₄/ Ni foam catalyst prepared at pH 9 after CP stability test for continuous electrolysis.
- **Figure S9.** PDOS for a) CFOi and b) CFOdis0.2.
- Figure S10. HER free energy diagram for catalysts without Ni foam
- **Table S1.** The electrocatalytic activity of our catalyst compared to those recently reported in the literature.
- Table S2. The current densities normalized to ESCA at different potential values for pH 9,

12.5, 13 respectively.

Faradaic efficiency (FE) calculations:

To measure the faradaic efficiency of the hydrogen produced from $CoFe_2O_4/Ni$ foam, water displacement method was applied. Chronopotentiometry was performed at a current density of 20 mA/cm² for 1h. The amount of hydrogen and oxygen produced was collected and measured via an inverted 10ml measuring cylinder in a sink of water.

Following the amount of hydrogen produced was calculated theoretically and experimentally to calculate the FE using the following equations.

Amount of hydrogen theoretically:

- The number of electrons used to produce hydrogen = Q applied at certain time/ Faraday's constant.
- Every one mole of H_2 produced $2e^-$ are required.
- No. of moles of hydrogen produced (n) = No. of electrons /2.

Amount of hydrogen experimentally:

- No of moles of hydrogen produced = amount of the displaced volume of water (L) / 22.4

 $\% FE = \frac{No. of moles of Hydrogen produced experimentaly}{No. of moles of Hydrogen produced theoretically} * 100$

Turnover frequency (TOF) calculations:

TOF of the electrocatalyst is a critical kinetic parameter that indicates the speed at which an electrocatalyst can catalyze a specific electrochemical reaction. TOFs for both HER and OER mechanisms can be calculated per unit time using the following formula, based on the pseudo-first-order kinetics, as reported in previous studies.

$$TOF = \frac{jN_A}{nF\Gamma}$$

where j is the current density (mA/cm²) measured, N_A is the Avogadro number, F is Faraday constant (96485), n is the number of electrons transferred (which is for HER=2, and OER=4), and Γ is the moles of the surface-active sites included within the used catalyst.

Therefore, the total number of H_2 produced per geometric area was calculated from the current density value extracted from the HER-LSV polarization curve as the following:

$$\# H_{2} = |J|(mA/cm^{2}) * (\frac{1 C/s}{1000 mA}) * (\frac{1 mol e^{-}}{96485}) * (\frac{1 mol H_{2}}{2e^{-}}) * (\frac{6.023 \times 10^{23} H_{2 molecules}}{1 mol H_{2}})$$
$$= 3.12 \times 10^{15} \frac{H_{2 s^{-}} 1}{cm^{2}} \text{ per } \frac{mA}{cm^{2}}$$

Since the total number of active sites are not precisely determined the exact number of binding sites for H_2 are not determined exactly. We calculated the total number of active sites as the total number of the surface sites from the unit cell of the catalyst (CoFe₂O₄) which could possibly underestimate the real TOF values.

From the crystal structure of $CoFe_2O_4$, we can calculate the number of active sites according to following equations:

Surface sites =
$$\left(\frac{56 \text{ atoms per unit cell}}{602.58 \text{ Å}^3 \text{ per unit cell}}\right)^{\frac{3}{2}}$$

 $3.15 * 10^{15} * |J| = \frac{3.15 * 10^{15} * |J|}{4 \text{ Surface active sites * A (ECSA)}} = \frac{3.15 * 10^{15} * |J|}{2.05 * 10^{15} * 241.5}$

Figure S1. XRD spectrum of $CoFe_2O_4$ powder prepared at pH (a) 9, (b) 12.5 and (c) 13. The peak at 32.5° in (b) is assigned to hematite (104).

Figure S2. Full FTIR spectrum of CoFe₂O₄ powder prepared at pH (a) 9, (b) 12.5, and (c) 13.

Figure S3. XPS spectrum of CoFe₂O₄/Ni foam. (a) Ni 2p. (b) O 1s for pH 9 sample and (c) Ni 2p, and (d) O 1s for pH 13 sample.

Figure S4. iR-corrected LSV at different scan rates (2, 5, 10 mV/s) for pH 9 sample

Figure S5. Determination of ECSA for CoFe₂O₄/Ni foam prepared at different pHs. CV scans at different scan rates (20 -100 mV s⁻¹) in 1 M KOH for the catalysts prepared at a) pH 9, b) pH 12.5, and c) pH 13.

Figure S6. SEM of CoFe₂O₄/ Ni foam catalyst prepared at pH 9 before and after CP stability test for 44 h of continuous electrolysis.

Figure S7. EDS of CoFe₂O₄/ Ni foam catalyst prepared at pH 9 before CP stability test for continuous electrolysis.

Figure S8. EDS of CoFe₂O₄/ Ni foam catalyst prepared at pH 9 after CP stability test for continuous electrolysis.

Figure S9. PDOS for a) CFO_i and b) $CFO_{dis0.2}$

Figure S10. HER free energy diagram for catalysts without Ni foam.

Table S1. The electrocatalytic activity of our catalyst compared to those recently reported in the literature.

Catalyst	Overpotential (mV) @ - 10mA/cm ²	Tafel slope (mV dec ⁻¹)	Ref.
CoFe ₂ O ₄ /Ni Foam $(\delta=0.33)$	66	67	This Work
CoNi/CoFe ₂ O ₄ /Ni foam	82	96	1
Co ₃ O ₄ -800/GC	93	122.1	2
NiFe-oFe ₂ O ₄ @Co ₃ S ₄ /CFP	98	78.2	3
Ti ₃ C ₂ –CoFe ₂ O ₄ /g-C ₃ N ₄	223	48.5	4
CoNiFe ₂ O ₄ + Se _x	173.5	91	5
CoFe ₂ O ₄ - graphene	248.3	116.6	6
NiFe ₂ O ₄ - graphene	259	121.4	6
FeSe ₂ /CoFe ₂ O ₄	231	88.76	7
CoFe ₂ O ₄ ED@NF	270	94	8
CoFe ₂ O ₄ / SWNTs	263	46	9
Ag@CoFe ₂ O ₄ /g-C ₃ N ₄	259	76.1	10

Table S2. The current densities normalized to ESCA at different potential values for pH 9, 12.5,

13, respectively.

Voltage Vs RHE	рН 9	pH 12.5	рН 13
	(Current density in	(Current density in	(Current density in
	mA cm ⁻² ECSA)	mA cm ⁻² ECSA)	mA cm ⁻² ECSA)
-0.08	0.055	0.05	0.0013
-0.09	0.6	0.054	0.0015
-0.1	0.068	0.061	0.0016
-0.11	0.077	0.067	0.0017
-0.12	0.087	0.078	0.0021

References

- 1. Suharyana, R. R. Febriani, N. P. Prasetya, Utari, N. A. Wibowo, Suharno, A. Supriyanto, A. H. Ramelan and B. Purnama, Kuwait J. Sci., 2023, 50, 575–579.
- C. Xiao, Y. Li, X. Lu and C. Zhao, *Adv. Funct. Mater.*, 2016, **26**, 3515–3523.
 S. Li, S. Sirisomboonchai, A. Yoshida, X. An, X. Hao, A. Abudula and G. Guan, *J. Mater.*

Chem. A, 2018, **6**, 19221–19230.

- 4. X. Hu, X. Tian, Y.-W. Lin and Z. Wang, RSC Adv., 2019, 9, 31563–31571.
- 5. S. Riyajuddin, K. Azmi, M. Pahuja, S. Kumar, T. Maruyama, C. Bera and K. Ghosh, ACS Nano, 2021, 15, 3, 5586–5599.
- 6. F. Bao, E. Kemppainen, I. Dorbandt, R. Bors, F. Xi, R. Schlatmann, R. van de Krol and S. Calnan, *ChemElectroChem*, 2021, **8**, 195–208.
- 7. L. Huang, Y. Hou, Z. Yu, Z. Peng, L. Wang, J. Huang, B. Zhang, L. Qian, L. Wu and Z. Li, *Int. J. Hydrogen Energy*, 2017, **42**, 9458–9466.
- 8. S. I. Perez Bakovic, P. Acharya, M. Watkins, H. Thornton, S. Hou and L. F. Greenlee, J. Catal., 2021, **394**, 104–112.
- 9. S. Anantharaj and S. Noda, ChemElectroChem, 2020, 7, 2297–2308.
- 10. Y. Zhu, H. A. Tahini, Z. Hu, J. Dai, Y. Chen, H. Sun, W. Zhou, M. Liu, S. C. Smith, H. Wang and Z. Shao, *Nat. Commun.*, 2019, **10**, 149