Electronic Supplementary Information

Computer-aided design of Pt/In2O3 single-atom catalysts for CO2 hydrogenation to methanol

Yuchen Wang^{a,b,c,†}, Zixuan Zhou^{a,b,†}, Bin Qin^{a,†}, Qingyu Chang^{a,†}, Shanshan Dang^a, Yiqin Hu^d, Kun Li^c, Yuanjie Bao^{a,b}, Jianing Mao^{b,e}, Haiyan Yang^a, Yang Liu^c, Jiong Li^e, Shenggang Li^{a,b,c,f*}, David A. Dixon,^{d*} Yuhan Sun^{a,c,g}, Peng Gao^{a,b,f*}

^a CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

^d Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Box 870336, Tuscaloosa, Alabama 35487-0336, USA

^e Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China

^f State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

^g Shanxi Research Institute, Huairou Research Laboratory, Taiyuan 030032, China

[†] These authors contributed equally: Yuchen Wang, Zixuan Zhou, Qingyu Chang.

Figure S1. Structures of the pristine $In_2O_3(111)$ surfaces. (a) Top and side views of thestoichiometric $In_2O_3(111)$ surface. (b) Top and side views of the defective $In_2O_3(111)$ surface witha V_O sitelocatedatthe O_c site.

Figure S2. Calculated Bader charges of pristine $In_2O_3(111)$ (**a**), surface-doped Pt/In₂O₃ (**c**) and bulk-doped Pt/In₂O₃ (**e**) and those structures with the O_{b_vac} site (**b**, **d**, **f**), where values in black are the positive charges of the surface metal sites (In/Pt), and those in green are the negative charges of the surface O sites (values in red are the metal-oxygen bond lengths in Å). The numbers above the blue arrows represent the total amount of charges transferred from the In₆, In₇, and In₁₀ sites after V_O formation, whereas the numbers below the blue arrows represent those transferred from the In₇, In₈, and In₁₁ sites after V_O formation.

Figure S3. Calculated Bader charges of pristine $In_2O_3(111)$ (**a**), surface-doped Pt/In₂O₃ (**c**) and bulk-doped Pt/In₂O₃ (**e**) and those structures with the O_{c_vac} site (**b**, **d**, **f**), where values in black are the positive charges of the surface metal sites (In/Pt), and values in green are the negative charges of the surface O sites (values in red are the metal-oxygen bond lengths in Å). The numbers above the blue arrows represent the total amount of charges transferred from the In₆, In₇, and In₁₀ sites after V_O formation, whereas the numbers below the blue arrows represent those transferred from the In₇, In₈, and In₁₁ sites after V_O formation.

To rationalize the effect of introducing the Pt dopant on the $\Delta G_{f,VO}$ value of a given V_O site such as the Ob vac or Oc vac site on the In2O3(111) surface, we calculated the atomic charges via Bader charge analysis ^{1, 2} as shown in Figure S2 and Figure S3. When the Pt dopant substitutes the In_b surface site, the positive charge of the resulting Pt_b surface site is significantly lower at 1.40 |e| than the $In_{b \text{ surface}}$ site of 1.82 |e|, which results in the much less negative charges of the surrounding three O atoms of -0.97 |e|, compared with the values of -1.15 |e| before the substitution. Similarly, when the Pt dopant replaces the In_{b bulk} site, the charges on the six O sites surrounding the Pt dopant changes from -1.23 |e| to about -1.07 |e|, whereas the charges on all the surface metal and O atoms remain nearly unchanged. For the formation of the Ob vac site (Figure S2), the introduction of the Pt_{b surface} dopant leads to the deeper reduction of the three metal sites around the O_{b vac} site as reflected from the greater decrease in the sum of their positive charges, 0.79 |e| after Pt doping versus 0.34 |e| before Pt doping. Deeper reduction of the three metal sites suggests lower stability, which is consistent with the increase in the $\Delta G_{f,VO}$ value from -0.59 eV to -0.21 eV upon introducing the Ptb surface dopant. Similarly, introducing the Ptb bulk dopant also leads to the deeper reduction of the three metal sites around the Ob vac site albeit to a less extent as indicated by the decrease in the sum of their positive charges of 0.55 |e|, consistent with the further increase in the $\Delta G_{f,VO}$ value to -0.06 eV. For the formation of the O_c vac site (Figure S3), introducing the Pt dopant at the In_{b surface} (In_{b bulk}) site always leads to the deeper reduction of the three metal sites around the O_{c vac} site, as the decrease in the sum of their positive charges increases from 0.77 |e| before Pt doping to 0.94 |e| (0.93 |e|) after Pt doping at the Inb surface (Inb bulk) site, respectively, consistent with the increase in the $\Delta G_{f,VO}$ value from -0.08 eV to 0.20 eV (0.15 eV).

Figure S4. Optimized structures of important adsorbates on the pristine $In_2O_3(111)$ surface. (a-f) Optimized structures of $In-CO_2(a)$, $bt-CO_2(b)$, $H_2(c)$, $CH_3OH(d)$, CO(e), and $H_2O(f)$ at the O_{c_vac} site on the defective $In_2O_3(111)$ surface.

Figure S5. Optimized structures of important adsorbates on the surface-doped Pt/In₂O₃(111) model. (a-f) Optimized structures of $ln-CO_2(a)$, $bt-CO_2(b)$, $H_2(c)$, $CH_3OH(d)$, CO(e), and $H_2O(f)$ at the Pt_{b_surface}-O_{b_vac} site on the surface-doped Pt/In₂O₃(111) model.

Figure S6. Optimized structures of important adsorbates on the bulk-doped $Pt/In_2O_3(111)$ model. (a-f) Optimized structures of $In-CO_2(a)$, $bt-CO_2(b)$, $H_2(c)$, $CH_3OH(d)$, CO(e), and $H_2O(f)$ at the $Pt_{b_bulk}-O_{c_vac}$ site on the bulk-doped $Pt/In_2O_3(111)$ model.

HCOO* pathway

Figure S7. Energy profiles for CH₃OH formation via the HCOO pathway. Relative energies in eV (electronic energies only) are shown for CO₂ hydrogenation to CH₃OH via the HCOO pathway at the O_{c_vac} site on the defective $In_2O_3(111)$ surface (red), at the $Pt_{b_surface}-O_{b_vac}$ site on the surface-doped Pt/In₂O₃(111) model (black), and at the $Pt_{b_surface}-O_{c_vac}$ site on the bulk-doped Pt/In₂O₃(111) model (black).

[CO-O]* pathway

Figure S8. Energy profiles for CO formation by direct CO₂ dissociation. Relative energies in eV (electronic energies only) are shown for CO₂ direct dissociation to CO at the O_{c_vac} site on the defective $In_2O_3(111)$ surface (red), at the $Pt_{b_surface}$ - O_{b_vac} site on the surface-doped Pt/In₂O₃(111) model (black), and at the Pt_{b_bulk}- O_{c_vac} site on the bulk-doped Pt/In₂O₃(111) model (blue).

COOH* pathway

Figure S9. Energy profiles for CO formation via the COOH pathway. Relative energies in eV (electronic energies only) are shown for CO₂ hydrogenation to CO via the indirect COOH pathway at the Oc vac site on the defective In₂O₃(111) surface (red), at the Pt_b surface-O_b vac site on the surfacedoped $Pt/In_2O_3(111)$ model (black), and at the Pt_{b_bulk} - O_{c_vac} site on the bulk-doped $Pt/In_2O_3(111)$ model (blue).

[CO+H]* pathway

Figure S10. Energy profiles for CH₃OH formation via the CO hydrogenation pathway. Relative energies in eV (electronic energies only) are shown for CO hydrogenation to CH₃OH at the O_{c} -vac site on the defective In₂O₃(111) surface (red), at the Pt_{b_surface}-O_{b_vac} site on the surface-doped Pt/In₂O₃(111) model (black), and at the Pt_{b_bulk}-O_{c_vac} site on the bulk-doped Pt/In₂O₃(111) model (black).

Figure S11. Calculated coverages of surface adsorbates. (a-c) Coverages of the major surface species during the CO₂ hydrogenation reaction at the O_{c_vac} site on the defective $In_2O_3(111)$ surface (a), at the $Pt_{b_surface}-O_{b_vac}$ site on the surface-doped Pt/In₂O₃(111) model (b), and at the $Pt_{b_sulk}-O_{c_vac}$ site on the bulk-doped Pt/In₂O₃(111) model (c).

Figure S12. Calculated degrees of selectivity control for CH₃OH. (a-c) Degrees of selectivity control for CH₃OH (DSC) during the CO₂ hydrogenation reaction at the O_{c_vac} site on the defective In₂O₃(111) surface (a), at the Pt_{b_surface}-O_{b_vac} site on the surface-doped Pt/In₂O₃(111) model (b), and at the Pt_{b_bulk}-O_{c_vac} site on the bulk-doped Pt/In₂O₃(111) model (c).

Figure S13. Electronic structure analysis and estimation of formal oxidation states. (a,b) Projected Density of State (PDOS) and Crystal Orbital Hamilton Population (COHP) analyses for the interaction between the In site and the H adsorbate in the presence of HCOO* at the oxygen vacancy for the $In_2O_3(111)$ and bulk-doped Pt/ In_2O_3 (Pt_{b_bulk}) models. Integrated COHP (ICOHP) values at the Fermi energy indicate the strength of the In-H interaction. (c) Estimation of the formal oxidation states of the Pt single atom sites based on the linear relationship between the calculated Bader charges and formal oxidation states of bulk Pt and its oxides.

Figure S14. The catalytic performance of the catalysts. (a) Effects of temperature on CO₂ hydrogenation over 1Pt/In₂O₃ catalyst. (b) Arrhenius plots and activation energies of methanol synthesis reactions over In₂O₃ and Pt modified In₂O₃ by different method. (c-f) Stability test of In₂O₃ (c), 3Pt/In₂O₃ (d), 1Pt/In₂O₃-DI (e), and 3Pt/In₂O₃-DI (f). Standard reaction conditions: 5 MPa, 573 K, H₂, H₂/CO₂ = 3:1, GHSV = 9000 mL·g_{cat}⁻¹·h⁻¹.

Figure S15. Characterization of various catalysts. (a-d) N_2 adsorption-desorption isotherms (a), pore size distribution (b), XRD patterns (c) and EPR spectra (d) of In_2O_3 and various Pt modified In_2O_3 catalysts.

Figure S16. Characterization of the samples. (a,b) HRTEM images of $1Pt/In_2O_3$ (a) and $3Pt/In_2O_3$ (b). (c,d) HAADF-STEM images of $3Pt/In_2O_3$ spent for 48h (c) and $1Pt/In_2O_3$ -DI spent for 48h (d), line-scanning intensity profiles (inlet) obtained on the zoomed areas. (e) TEM-EDS elemental mapping of $1Pt/In_2O_3$ -DI catalyst spent for 48 h, scale bar, 10 nm.

Figure S17. X-ray absorption studies. (**a**,**b**) The k³-weighted Fourier transform of the EXAFS spectra of catalysts pretreated in Ar at 573 K for 1 h (**a**), and after the CO₂ hydrogenation reaction for 48 h (**b**). (**c-f**) Normalized XANES spectra at the Pt L₃-edge of Pt foil, PtO₂, and various Pt modified In₂O₃ catalysts pretreated in Ar at 573 K for 1 h (**c**), and after the CO₂ hydrogenation reaction for 1 h (**d**) and 48 h (**e**).

Figure S18. XPS results. (a-d) XPS spectra of Pt 4d for fresh samples (a), samples pretreated in Ar at 573 K for 1 h (b) and catalysts after CO₂ hydrogenation reaction for 1 h (c) or 48 h (d). (1) In_2O_3 , (2) $1Pt/In_2O_3$, (3) $3Pt/In_2O_3$, (4) $1Pt/In_2O_3$ -DI, (5) $3Pt/In_2O_3$ -DI.

Figure S19. XPS results. (a-d) XPS spectra of O 1s for fresh samples (a), samples pretreated in Ar at 573 K for 1 h (b), and catalysts after CO₂ hydrogenation reaction for 1 h (c) or 48 h (d). (e) The relative oxygen vacancy concentration of samples with different situation. (1) In_2O_3 , (2) IPt/In_2O_3 , (3) $3Pt/In_2O_3$, (4) $1Pt/In_2O_3$ -DI, (5) $3Pt/In_2O_3$ -DI.

Figure S20. CO₂-TPD profiles. Pristine In_2O_3 and various Pt modified In_2O_3 catalysts were pretreated in 5%H₂/Ar at 573 K for 1 h.

R1:CO2_g + *_s <-> CO2_s #ln-CO2

R2:CO2_g + *_s <-> O2C_s #bt-CO2

R3:CO2_s + H_h <-> [CO2-H_s] + *_h <-> HCOO_s + *_h

R4:HCOO_s + H_h <-> [HCOO-H_s] + *_h <-> H2COO_s + *_h

R5:H2COO_s <-> [H2CO-O_s] <-> OH2CO_s

 $\mathsf{R6:OH2CO_s+2H_h} <-> [\mathsf{OHH2CO-H_s]} + 2^*_h <-> \mathsf{OH3COH_s} + 2^*_h$

R7:OH3COH_s <-> [OH3CO-H_s] <-> OCH3OH_s

R8:OCH3OH_s <-> CH3OH_g + O_s

R9:H2_g + 2*_h <-> [H-H_h] + *_h <-> 2H_h

R10:H2_g + O_s + *_h <-> [OH-H_s] + *_h <-> OH_s + H_h

R11:OH_s + H_h <-> [H-OH_s] + *_h <-> H2O_s + *_h

R12:H2O_s <-> H2O_g + *_s

R13:O_s + H_h <-> OH_s + *_h

R15:CO_s <-> CO_g + *_s

R16:O2C_s + H_h <-> [O2C-H_s] + *_h <-> COOH_s + *_h

R17:COOH_s + *_s <-> [CO-OH_s] + *_s <-> CO_s + OH_s

R18:CO_s + H_h <-> [CO-H_s] + *_h <-> CHO_s + *_h

R19:CHO_s + H_h <-> [CHO-H_s] + *_h <-> OCH2_s + *_h

R20:OCH2_s + H_h <-> [CH2O-H_s] + *_h <-> OCH3_s + *_h

R21:OCH3_s + H_h <-> [CH3O-H_s] + *_h <-> CH3OH_s + *_h

R22:CH3OH_s <-> CH3OH_g + *_s

Figure S21. The structures of the intermediates for the elementary steps.

Figure S22. Top view of the structures for H migration for the $In_2O_3(111)$, Pt_{b_bulk} and Pt_{b_bulk} models.

HCOO* pathway

Figure S23. Energy profiles for CH₃OH formation via the HCOO pathway. Relative energies in eV (electronic energies only) are shown for CO₂ hydrogenation to CH₃OH via the HCOO pathway at the $Pt_{b_surface}$ -O_{b_vac} on the surface-doped Pt/In₂O₃(111) model (black), at the Pt_{b_dual} -O_{b_vac} site on the surface and bulk co-doped Pt/In₂O₃(111) model (red).

[CO-O]* pathway

Figure S24. Energy profiles for CO formation by direct CO₂ dissociation. Relative energies in eV (electronic energies only) are shown for CO₂ direct dissociation to CO at the $Pt_{b_surface}-O_{b_vac}$ on the surface-doped Pt/In₂O₃(111) model (black), at the $Pt_{b_dual}-O_{b_vac}$ site on the surface and bulk co-doped Pt/In₂O₃(111) model (red).

COOH* pathway

Figure S25. Energy profiles for CO formation via the COOH pathway. Relative energies in eV (electronic energies only) are shown for CO₂ hydrogenation to CO via the indirect COOH pathway at the $Pt_{b_surface}$ -O_{b_vac} on the surface-doped Pt/In₂O₃(111) model (black), at the Pt_{b_dual} -O_{b_vac} site on the surface and bulk co-doped Pt/In₂O₃(111) model (red).

[CO+H]* pathway

Figure S26. Energy profiles for CH₃OH formation via the CO hydrogenation pathway. Relative energies in eV (electronic energies only) are shown for CO hydrogenation to CH₃OH at the $Pt_{b_surface}$ -O_{b_vac} on the surface-doped Pt/In₂O₃(111) model (black), at the Pt_{b_dual} -O_{b_vac} site on the surface and bulk co-doped Pt/In₂O₃(111) model (red).

Species –	E _{ad} /eV							
	O _{c_vac}	$Pt_{b_surface}$ - O_{b_vac}	Ptb_bulk-Oc_vac					
<i>ln</i> -CO ₂	-0.21	-0.28	-0.20					
<i>bt</i> -CO ₂	1.15	-0.78	1.00					
H_2	-0.06	-0.07	-0.05					
CH ₃ OH	-0.66	-0.77	-0.49					
CO	-0.15	-0.95	-0.16					
H ₂ O	-0.65	-0.68	-0.65					
H ^a	0.10	0.40	0.21					

Table S1. Calculated adsorption energies (E_{ad} , electronic energies only) of selected adsorbates from Eq. (3).

^a $E_{ad}(H)$ is calculated slightly differently as $E_{ad}(H) = E_{total} - (E_{slab} + \frac{1}{2} E_{H2})$.

$\Delta E_{adh}(eV)$	Pt_surface	Pt_bulk
In _a	-9.60	-9.70
In _b	-11.30	-10.76
In _c	-9.17	-9.04
In _d	-10.35	-9.35
Ine	-10.22	-9.68
In _f	-9.48	-10.32

Table S2. Calculated adhesive energies (ΔE_{adh} , electronic energies only) of a bulk-doped or surface-doped Pt atom with an In vacancy (V_{In}) in In₂O₃(111).

$\Delta G_{f,VO}(eV)$	Pristine In ₂ O ₃ (111)	Pt _{b_surface}	Pt _{b_bulk}
O _a	0.27	0.55	0.56
O _b	-0.59	-0.21	-0.06
Oc	-0.08	0.20	0.15
O_d	-0.44	0.31	0.10

Table S3. Calculated free formation energies of the surface V_0 site on pristine $In_2O_3(111)$, surface, and bulk doped Pt/In₂O₃(111) for H₂ reduction at 573 K.

Relative Energy (eV)	O _{c_vac}	$Pt_{b_surface}$ - O_{b_vac}	Pt _{b_bulk} -O _{c_vac}
*_D	0.00	0.00	0.00
[ln-CO ₂ +H]*_D	0.25	-0.83	0.23
TS1	0.27	0.00	0.68
mono-HCOO*_D	-1.05	-0.14	-0.98
bi-HCOO*_D	-1.14	-0.91	-1.07
[HCOO+H]*_D	-0.05	0.07	-0.74
TS2	0.53	0.61	-0.05
H ₂ COO*_D	-0.76	-0.10	-0.80
TS3	-0.51	1.24	-0.65
[CH ₂ O-O]*_D	-0.67	-0.16	-0.65
[CH ₂ O+2H]*_P	-0.50	-0.66	-0.72
TS4	-0.20	0.29	-0.34
[CH ₃ O+H]*_P	-1.57	-2.27	-1.79
TS5	-1.42	0.22	-1.62
CH ₃ OH*_P	-1.44	-1.22	-2.01
*_D	-0.66	-0.66	-0.66

Table S4. Relative energies (electronic energies only) for CO₂ hydrogenation to CH₃OH via the HCOO pathway.

Relative Energy (eV)	O _{c_vac}	$Pt_{b_surface}$ - O_{b_vac}	Pt _b _bulk-O _{c_vac}
$CO_2(g)+H_2(g)$	0.00	0.00	0.00
bt-CO ₂ *+H ₂ (g)	1.15	-0.78	1.00
TS1	1.21	1.93	1.01
CO*+O*+H ₂ (g)	0.19	0.31	-0.04
$O^*+H_2(g)+CO(g)$	0.34	0.46	0.10
OH*+H*+CO(g)	0.32	-0.34	0.10
TS2	1.38	-0.04	1.26
H ₂ O*+CO(g)	0.05	-0.14	0.05
$H_2O(g)+CO(g)$	0.70	0.70	0.70

Table S5. Relative energies (electronic energies only) for CO₂ direct dissociation to CO.

Relative Energy (eV)	O _{c_vac}	$Pt_{b_surface}$ - O_{b_vac}	Pt _{b_bulk} -O _{c_vac}
$CO_2(g)+H_2(g)$	0.00	0.00	0.00
bt-CO ₂ *+H*+0.5H ₂ (g)	-0.50	-1.05	-1.12
TS1	0.53	0.68	1.09
COOH*+0.5H ₂ (g)	0.31	-0.46	0.80
TS2	0.32	-0.46	0.81
CO*+OH*+0.5H ₂ (g)	-0.58	-0.59	-0.54
OH*+0.5H ₂ (g)	-0.35	-0.36	-0.30
OH*+H*+CO(g)	0.32	-0.34	0.10
TS3	1.38	-0.04	1.26
H ₂ O*+CO(g)	0.05	-0.14	0.05
$H_2O(g)+CO(g)$	0.70	0.70	0.70

Table S6. Relative energies (electronic energies only) for CO₂ hydrogenation to CO via the COOH pathway.

Relative Energy (eV)	O _{c_vac}	$Pt_{b_surface}$ - O_{b_vac}	Pt_{b_bulk} - O_{c_vac}
*_D	0.00	0.00	0.00
[CO+H]*_D	0.34	-0.27	0.28
TS1	0.51	-0.21	0.81
[CHO+H]*_D	0.73	-1.20	0.51
TS2	0.81	-0.89	0.59
[CH ₂ O+H]*_D	-0.50	-1.02	-1.57
TS3	-0.44	-0.38	-0.34
[CH ₃ O+H]*_D	-1.77	-2.13	-2.00
TS4	-0.69	-0.76	-0.86
CH ₃ OH*_D	-2.02	-2.13	-1.85
*_D	-1.36	-1.36	-1.36

Table S7. Relative energies (electronic energies only) for CO hydrogenation to CH₃OH.

Table S8. Elementary reactions considered in microkinetic simulations of CO_2 hydrogenation to methanol and CO on the $In_2O_3(111)$ and $Pt/In_2O_3(111)$ surfaces. ("_s" and "_h" denote the V_0 and "hydrogen reservoir" sites, respectively, "_g" indicates gaseous species, and "#" marks the beginning of a comment.)

Step	Elementary reaction
R1	CO2_g + *_s <-> CO2_s #ln-CO2
R2	CO2_g + *_s <-> O2C_s #bt-CO2
R3	$CO2_s + H_h <-> [CO2-H_s] + *_h <-> HCOO_s + *_h$
R4	$HCOO_s + H_h <-> [HCOO-H_s] + *_h <-> H2COO_s + *_h$
R5	H2COO_s <-> [H2CO-O_s] <-> OH2CO_s
R6	$OH2CO_s + 2H_h <-> [OHH2CO-H_s] + 2*_h <-> OH3COH_s + 2*_h$
R7	OH3COH_s <-> [OH3CO-H_s] <-> OCH3OH_s
R8	OCH3OH_s <-> CH3OH_g + O_s
R9	$H2_g + 2*_h <-> [H-H_h] + *_h <-> 2H_h$
R10	$H2_g + O_s + *_h <-> [OH-H_s] + *_h <-> OH_s + H_h$
R11	OH_s + H_h <-> [H-OH_s] + *_h <-> H2O_s + *_h
R12	H2O_s <-> H2O_g + *_s
R13	$O_s + H_h <-> OH_s + *_h$
R14	$CO2_s + *_s <-> [CO-O_s] + *_s <-> CO_s + O_s$
R15	CO_s <-> CO_g + *_s
R16	$O2C_s + H_h <-> [O2C-H_s] + *_h <-> COOH_s + *_h$
R17	COOH_s + *_s <-> [CO-OH_s] + *_s <-> CO_s + OH_s
R18	CO_s + H_h <-> [CO-H_s] + *_h <-> CHO_s + *_h
R19	$CHO_s + H_h <-> [CHO-H_s] + *_h <-> OCH2_s + *_h$
R20	$OCH2_s + H_h <-> [CH2O-H_s] + *_h <-> OCH3_s + *_h$
R21	$OCH3_s + H_h <-> [CH3O-H_s] + *_h <-> CH3OH_s + *_h$
R22	CH3OH_s <-> CH3OH_g + *_s

Sample	Measured Pt Loading ^a (wt.%)	Pt disperision ^b (%)	S _{BET} ^c (m ² g ⁻¹)	V _{micro} ^d (cm ³ g ⁻¹)	V _{meso} ^e (cm ³ g ⁻¹)
In ₂ O ₃	0	-	76	0.008	0.073
1Pt/In ₂ O ₃	1.24	27.5	78	0.012	0.124
3Pt/In ₂ O ₃	2.81	18.1	126	0.008	0.253
1Pt/In ₂ O ₃ -DI	1.37	-	46	0.002	0.115
3Pt/In ₂ O ₃ -DI	3.01	-	31	0.001	0.114

 Table S9. Textural properties of various samples.

^a Measured by ICP. ^b Obtained by CO chemisorption. ^c BET specific surface area. ^d Micropore volume determined by t-plot. ^e Mesopore volume determined by V_{total} – V_{mico} .

Catalyst	H2/CO2 ratio	Т (К)	p (MPa)	Space velocity (mL g _{cat} ⁻¹ h ⁻¹)	CO ₂ conv. (%)	CH ₃ OH sel. (%)	STY (CH ₃ OH) (g g _{cat} ⁻¹ h ⁻¹)	SI Ref.
Ir/In ₂ O ₃	4:1	573	5	21000	17.7	~70.0	0.765	
Pd-P/In ₂ O ₃	4:1	573	5	21000	~20.0	~70.0	0.89	
h-In ₂ O ₃ /Pd	3:1	573	3	19200	~10.5	72.4	0.53	
Pt/In ₂ O ₃	3:1	573	4	54000	5.7	~71.5	0.76	
	3:1	573	4	24000	~8.9	~66.5	~0.47	3
Ru/In ₂ O ₃	4:1	573	5	21000	14.3	69.7	0.57	
Au/In ₂ O ₃	4:1	573	5	21000	11.7	67.8	0.47	
Ni/In ₂ O ₃	4:1	573	5	21000	18.4	~54.0	0.55	
In ₂ O ₃ @Co	4:1	523	5	15600	8.3	~87.0	0.65	
Rh/In ₂ O ₃	4:1	573	5	45000	9.3	75	0.75	4
Co-RhIn/(5In5Al)O	3:1	543	4.5	36000	7.2	90.8	0.84	5
Cu/3DZrO _x	3:1	533	4.5	21,600	13.1	78.7	0.796	6
Cu-ZIF-8	3:1	533	4.5	21600	~22.0	~75.0	0.930	7
1ZnO/Cu(OH) ₂	3:1	533	4.5	37600	15.2	51.1	0.996	ō
3ZnO/Cu(OH) ₂	3:1	533	4.5	21600	21.9	56.0	0.958	0
F-CuZn_553	3:1	493	4.0	56571	1.9	82.3	0.656	9
Cu/ZnO/Al ₂ O ₃	3:1	533	1.5	60000	-	48	0.538	10
Inverse-ZrO ₂ /Cu	3:1	493	3	48000	<5	~70	0.524	11
ZnO-ZrO ₂	3:1	593	5	24000	10	91	0.720	12
Ga/Zn/ZrO _x	3:1	593	5	24000	8.8	87.4	0.630	13
In ₂ O ₃ /ZrO ₂	4:1	573	5	20000	5.2	99.8	0.321	14
PdZn/ZnO/SiO ₂	3:1	533	5.0	-	3.6	65.3	0.443	15

Table S10. Summary of catalysts for CO₂ hydrogenation to methanol.

Catalyst	H ₂ /CO ₂ ratio	Т (К)	p (MPa)	Space velocity (mL g _{cat} ⁻¹ h ⁻¹)	CO ₂ conv. (%)	CH3OH sel. (%)	STY (CH ₃ OH) (g g _{cat} ⁻¹ h ⁻¹)	SI Ref.
PdZn/ZnO/ZnFe ₂ O ₄	3:1	563	5.0	21600	13.94	55.02	0.593	16
Pd@ZIF-8	3:1	543	4.5	-	15	56.2	0.65	17
InNi ₃ C _{0.5} /Fe ₃ O ₄	3:1	573	4	24000	8.9	91.4	0.71	18
Ni ₃ InC _{0.5} /monoclinic-ZrO	2 3:1	573	5	24000	8.5	87.9	0.62	
MoS_2	3:1	453	5	3000	12.5	94.3	0.13	19
1Pt/In ₂ O ₃	3:1	573	5	36000	10.4	76.1	0.98	
				45000	8.2	81.6	1.03	
				54000	7.7	84.8	1.25	This work
3Pt/In ₂ O ₃	3:1	553	5	36000	11.7	78.0	1.13	THIS WOLK
				45000	10.3	78.5	1.25	
				54000	8.4	76.1	1.18	

Sample	Conditi on	Shell	CN ^a	R ^b (Å)	σ^{2c}	ΔE_0^{d}	R factor ^e
Pt Foil		Pt-Pt	12*	2.76±0.01	0.0047	7.2±0.3	0.0023
PtO ₂		Pt-O	6*	2.02±0.01	0.0028	8.1±0.1	0.0067
1Pt/In ₂ O ₃		Pt-O	4.7±0.2	2.02±0.02	0.0032	13.9±0.9	0.0104
3Pt/In ₂ O ₃	A	Pt-O	4.4±0.3	2.01±0.02	0.0031	12.5±1.7	0.0119
1Pt/In ₂ O ₃ -DI	Ar	Pt-O	4.1±0.1	2.00±0.02	0.0042	12.1±1.2	0.0175
3Pt/In ₂ O ₃ -DI		Pt-O	3.8±0.1	2.00±0.03	0.0045	10.9±1.3	0.0123
1Pt/In ₂ O ₃		Pt-O	2.6±0.2	2.06±0.01	0.0031	18.1±0.7	0.0102
3Pt/In ₂ O ₃		Pt-O	2.4±0.1	2.04±0.01	0.0042	16.5±1.0	0.0099
1Pt/In ₂ O ₃ -DI		Pt-O	1.7±0.2	2.11±0.02	0.0079		
	1 h	Pt-In	1.2±0.2	2.81±0.01	0.0055	20.5±1.5	0.0123
		Pt-Pt	2.0±0.7	3.26±0.03	0.0031		
3Pt/In ₂ O ₃ -DI		Pt-In	5.9±0.2	2.74±0.01	0.0076	7.0+0.7	0.0040
		Pt-Pt	5.9±1.3	2.83±0.02	0.0092	7.9±0.7	0.0040
1Pt/In ₂ O ₃		Pt-O	2.4±0.2	2.09±0.02	0.0038	19.2±1.2	0.0157
3Pt/In ₂ O ₃		Pt-O	2.3±0.1	2.07±0.01	0.0058	17.8±1.4	0.0132
1Pt/In ₂ O ₃ -DI		Pt-O	1.5±0.2	2.10±0.03	0.0053		
	48 h	Pt-In	2.0±0.3	2.81±0.01	0.0069	20.7±1.6	0.0187
		Pt-Pt	3.4±1.0	3.29±0.03	0.0046		
3Pt/In ₂ O ₃ -DI		Pt-In	5.5±0.3	2.74±0.01	0.0052	0.0+1.1	0.0142
		Pt-Pt	6.3±2.5	2.84±0.03	0.0048	9.0±1.1	0.0143

Table S11. EXAFS fitting parameters at the Pt L₃-edge for various samples ($S_0^2 = 0.84$).

^{*a*} CN = coordination numbers; ^{*b*} R = bond distance; ^{*c*} σ^2 = Debye-Waller factors; ^{*d*} ΔE_0 = inner potential correction. ^{*e*} R factor = goodness of fit.

			Atomic content (%))
Situation	Sample	Red Pt ⁴⁺	Blue Pt ²⁺	Yellow Pt ⁰
		/317.0 eV	/315.3eV	/314.2 eV
	1Pt/In ₂ O ₃	50.67	49.33	0
fur al	3Pt/In ₂ O ₃	54.86	45.14	0
iresn	1Pt/In ₂ O ₃ -DI	100	0	0
	3Pt/In ₂ O ₃ -DI	100	0	0
	1Pt/In ₂ O ₃	39.94	60.06	0
	3Pt/In ₂ O ₃	72.85	27.15	0
Ar	1Pt/In ₂ O ₃ -DI	100	0	0
	3Pt/In ₂ O ₃ -DI	100	0	0
	1Pt/In ₂ O ₃	0	100	0
1.1	3Pt/In ₂ O ₃	0	100	0
l h	1Pt/In ₂ O ₃ -DI	31.97	0	68.03
	3Pt/In ₂ O ₃ -DI	37.44	0	62.56
	1Pt/In ₂ O ₃	0	100	0
40.1	3Pt/In ₂ O ₃	0	100	0
48 h	1Pt/In ₂ O ₃ -DI	34.41	0	68.59
	3Pt/In ₂ O ₃ -DI	40.13	0	59.87

Table S12. Deconvolution results of Pt $4d_{5/2}$ XPS peaks.

Pretreatment conditions ^a	In ₂ O ₃	1Pt/In ₂ O ₃	3Pt/In ₂ O ₃	1Pt/In ₂ O ₃ -DI	3Pt/In ₂ O ₃ -DI
Ar ^b	3.57	7.41	11.58	9.37	2.66
$H_2{}^b$	3.08	3.91	2.04	3.18	2.43

Table S13. Quantification of CO₂ chemisorbed on the catalysts.

^a All samples were pretreated in Ar or H_2 at 573 K for 1 h. ^b mmol g_{cat}^{-1} .

	Bader charge (e)	Formal oxidation state
Pt	0.00	0
Pt ₂ O	0.43	+1
PtO	0.98	+2
Pt ₃ O ₄	1.12	+2.67
PtO ₂	1.49	+3
Pt _{b_surface}	1.40	(+3.5)
$Pt_{b_surface}$ - O_{b_vac}	0.81	(+1.9)
Pt _{b_bulk}	1.39	(+3.5)
Pt _{b_bulk} -O _{c_vac}	1.39	(+3.5)

Table S14. Calculated Bader charges and the formal oxidation states of the Pt single atom sites. Numbers in the paratheses are estimated from the linear relationship shown in Figure S13b.

Table S15. Calculated rate constants of elementary steps for the $In_2O_3(111)$, $Pt_{b-surface}$ and Pt_{b-bulk} models at 573 K. All the rate constants were calculated based on the transition state theory as implemented in CatMAP. Only the rate constants of the forward direction are listed, although those for both directions were calculated in the microkinetic simulations.

Ston	Ston Elementary reaction		Rate constant				
Step	Liementary reaction	O _{c_vac}	Pt _{b_surface} -O _{b_vac}	Pt _{b_bulk} -O _{c_vac}			
R1	CO2_g+s->CO2_s	3.68E+04	3.57E+09	3.02E+04			
R2	CO2_g+s->O2C_s	2.51E-05	2.30E+11	3.26E-04			
R3	CO2_s+H_t->[CO2-H_s]+t->HCOO_s+t	9.68E+12	1.86E+03	2.81E+10			
R4	HCOO_s+H_t->[HCOO-H_s]+t->H2COO_s+t	1.97E-01	2.39E-01	5.74E+05			
R5	H2COO_s->[H2CO-O_s] ->OH2CO_s	4.42E+11	2.45E+02	2.96E+12			
R6	OH2CO_s+H_t+H_t->[OHH2CO-H_s]+2t->OH3COH_s+2t	3.83E+06	6.30E-06	1.19E+13			
R7	OH3COH_s->[OH3CO-H_s] ->OCH3OH_s	4.43E+12	4.84E-10	3.60E+11			
R8	OCH3OH_s->CH3OH_g+O_s	1.19E+13	1.19E+13	1.19E+13			
R9	$H2_g+t+t->[H-H_t]+t->H_t+H_t$	1.68E+05	1.19E+13	2.04E+03			
R10	H2_g+O_s+t->[OH-H_s]+t->OH_s+H_t	2.96E-01	3.86E-11	1.57E-01			
R11	OH_s+H_t->[H-OH_s]+t->H2O_s+t	1.26E-01	1.30E+05	3.04E+01			
R12	H2O_s->H2O_g+s	1.19E+13	1.19E+13	1.19E+13			
R13	O_s+H_t->OH_s+t	1.19E+13	1.19E+13	1.19E+13			
R14	$CO2_s + s \rightarrow [CO-O_s] + s \rightarrow CO_s + O_s$	/	3.97E-09	1.92E+04			
R15	CO_s->CO_g+s	1.19E+13	1.19E+13	1.19E+13			
R16	O2C_s+H_t->O2C-H_s+t->COOH_s+t	1.19E+13	/	1.19E+13			
R17	COOH_s+s->CO-OH_s+s->CO_s+OH_s	1.12E+12	/	4.56E+10			
R18	CO_s+H_t->CO-H_s+t->CHO_s+t	4.85E+09	7.17E+01	2.49E+07			
R19	CHO_s+H_t->CHO-H_s+t->OCH2_s+t	2.17E+09	3.86E+02	2.25E+12			
R20	OCH2_s+H_t->CH2O-H_s+t->OCH3_s+t	1.19E+13	1.40E-07	8.05E+08			
R21	OCH3_s+H_t->CH3O-H_s+t->CH3OH_s+t	4.46E-02	7.96E-08	5.30E+01			
R22	CH3OH_s->CH3OH_g+s	1.19E+13	1.19E+13	1.19E+13			

Table S16. Calculated energy barriers (E_a) and reaction energies (E_r) for H migration for the In₂O₃(111), Pt_{b_surface}, and Pt_{b_bulk} models.

Structure	Pathway	E _a /eV	E _r /eV
$In_2O_3(111)$	In8→O4	1.18	-0.73
	In8→In11	0.34	0.33
$In_2O_3(111)$ with a secondary H on In4	In8→O4	1.28	-1.05
	In8→In11	0.14	0.13
$Pt_{b_surface}$	Pt6→O2	1.11	-0.45
	Pt6→In10	1.15	1.00
Ptb_surface with a secondary H on In3	Pt6→O2	1.05	-0.71
	Pt6→In10	1.27	1.24
Pt_{b_bulk}	In8→O4	1.14	-0.62
	In8→In11	0.26	0.21
$Pt_{b_{bulk}}$ with a secondary H on In4	In8→O4	1.26	-0.82
	In8→In11	0.20	0.20

Supplementary References.

- S1. G. Henkelman, A. Arnaldsson and H. Jónsson, Comput Mater Sci, 2006, 36, 354-360.
- S2. E. Sanville, S. D. Kenny, R. Smith and G. Henkelman, J Comput Chem, 2007, 28, 899-908.
- S3. D. Cai, Y. Cai, K. B. Tan and G. Zhan, *Materials*, 2023, 16, 2803.
- S4. S. N. H. Dostagir, C. B. Thompson, H. Kobayashi, A. M. Karim and A. Shrotri, *Catal. Sci. Technol.*, 2021, **10**, 8196-8202.
- S5. M. M. J. Li, H. Zou, J. Zheng, T. S. Wu, T. S. Chan, Y. L. Soo, X. P. Wu, X. Q. Gong, T. Chen, K. Roy, G. Held and S. C. E. Tsang, *Angew. Chem. Int. Ed.*, 2020, **59**, 16039-16046.
- S6. T. Liu, X. Hong and G. Liu, ACS Catalysis, 2020, 10, 93-102.
- S7. B. Hu, Y. Yin, Z. Zhong, D. Wu, G. Liu and X. Hong, *Catal Sci Technol*, 2019, 9, 2673-2681.
- S8. X. Liu, J. Luo, H. Wang, L. Huang, S. Wang, S. Li, Z. Sun, F. Sun, Z. Jiang and S. Wei, *Angew. Chem. Int. Ed.*, 2022, **61**, e202202330.
- S9. V. Dybbert, S. M. Fehr, F. Klein, A. Schaadt, A. Hoffmann, E. Frei, E. Erdem, T. Ludwig, H. Hillebrecht and I. Krossing, *Angew. Chem. Int. Ed.*, 2019, 58, 12935-12939.
- S10. M. Zabilskiy, V. L. Sushkevich, M. A. Newton and J. A. Van Bokhoven, *ACS Catal.*, 2020, 10, 14240-14244.
- S11. C. Wu, L. Lin, J. Liu, J. Zhang and D. Ma, Nat. Commun., 2020, 11, 5767.
- S12. J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu and C. Li, *Sci. Adv.*, 2017, 3, e1701290.
- S13. F. Sha, C. Tang, S. Tang, Q. Wang, Z. Han, J. Wang and C. Li, J. Catal., 2021, 404, 383-392.
- S14. O. Martin, A. J. Martín, C. Mondelli, S. Mitchell, T. F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré and J. Pérez-Ramírez, *Angew. Chem. Int. Ed.*, 2016, 55, 6261-6265.
- S15. M. Zabilskiy, V. L. Sushkevich, M. A. Newton, F. Krumeich, M. Nachtegaal and J. A. Bokhoven, *Angew. Chem. Int. Ed.*, 2021, 60, 17053-17059.
- S16. Y. Wang, D. Wu, T. Liu, G. Liu and X. Hong, *Journal of colloid and interface science*, 2021, **597**, 260-268.
- S17. Y. Yin, X. Bing, X. Zhou, X. Hong and G. Liu, *Appl. Catal. B: Environ.*, 2018, 234, 143-152.
- S18. C. Meng, G. Zhao, X. R. Shi, P. Chen, Y. Liu and Y. Lu, Sci. Adv., 2021, 7, abi6012.
- S19. J. Hu, L. Yu, J. Deng, Y. Wang, K. Cheng, C. Ma, Q. Zhang, W. Wen, S. Yu, Y. Pan, J. Yang, H. Ma, F. Qi, Y. Wang, Y. Zheng, M. Chen, R. Huang, S. Zhang, Z. Zhao, J. Mao, X. Meng, Q. Ji, G. Hou, X. Han, X. Bao, Y. Wang and D. Deng, *Nat. Catal.*, 2021, 4, 242-250.

Optimized coordinates.

The structure of O_{c_vac} site on the pristine $In_2O_3(111)$ model.

In O

1.000000000000000					
7.22215000120079	-12.509130739190	0.0000000000)0006	0	
0.0000000000000000000000000000000000000	8.339420493717	8671 -11.79372156356	57558	5	
14.68509925505480	8.478446009861	8144 5.9951666679	95705	52	
In O					
48 71					
Selective dynamics					
Direct					
0.8515836378845805	0.4089291826345161	0.3472970745831390	F	F	F
0.5150245914900321	0.7440169721361686	0.5107315124964786	Т	Т	Т
0.1787936890341729	0.0787346890256027	0.6841346174597788	Т	Т	Т
0.8291001228075459	0.9356178259191950	0.3251822334614900	F	F	F
0.4951056047961073	0.2660620800789640	0.4968343422877485	Т	Т	Т
0.1609281290305564	0.6026696688509230	0.6619426644787515	Т	Т	Т
0.3248949945999087	0.4314126977115507	0.3251822334614900	F	F	F
0.9940745370838551	0.7646081243098523	0.4940448122225525	Т	Т	Т
0.6597502785703476	0.1001724195076380	0.6726034020991035	Т	Т	Т
0.8403418803460667	0.6722735042768520	0.3362396540223145	F	F	F
0.5069863334583480	0.0070607263158987	0.5048350010116757	Т	Т	Т
0.1687909624471381	0.3292651525912543	0.6717497474286122	Т	Т	Т
0.1065177031116420	0.6835152618153728	0.3251822334614900	F	F	F
0.7765179567201185	0.0145515363917361	0.4941065213529806	Т	Т	Т
0.4489350411563409	0.3467701301946983	0.6650858960867200	Т	Т	Т
0.5994810737807654	0.4426544552500715	0.3472970745831390	F	F	F
0.2672742569735468	0.7772087686617817	0.5107834234786717	Т	Т	Т
0.9262410723333766	0.1033066863801731	0.6847315499916394	Т	Т	Т
0.0952759455731211	0.4426544552500715	0.3472970745831461	F	F	F
0.7644220695978731	0.7734449049399712	0.5167335888994488	Т	Т	Т
0.4356459748316076	0.1168513267089597	0.6799527934028261	Т	Т	Т
0.0727924304960865	0.9018925533036395	0.3251822334614900	F	F	F
0.7428000944078721	0.2308768497348092	0.4990481937607448	Т	Т	Т
0.4048884566139211	0.5679185646650453	0.6572928951825260	Т	Т	Т
0.5657558011652100	0.6610317467383382	0.3472970745831461	F	F	F
0.2337817565971952	0.9939317528785960	0.5177637265267626	Т	Т	Т
0.8934830693472149	0.3235448895875112	0.6795026573279173	Т	Т	Т
0.8403418803460667	0.1680683760692148	0.3362396540223145	F	F	F
0.5004101948575349	0.5016592518854255	0.5035359433096305	Т	Т	Т

0.1627270417983703	0.8342711708057631	0.6716874440926097	Т	Т	Т
0.5657558011652100	0.1568266185306939	0.3472970745831461	F	F	F
0.2303086252596035	0.4927466367354448	0.5078905634472353	Т	Т	Т
0.9023627123224102	0.8262623374393062	0.6847387182803629	Т	Т	Т
0.1065177031116420	0.1793101336077285	0.3251822334614900	F	F	F
0.7772491466085952	0.5138815911219601	0.4985206630978367	Т	Т	Т
0.4501589012784232	0.8542262188473980	0.6575851634290834	Т	Т	Т
0.5769975587037308	0.9018925533036395	0.3251822334614900	F	F	F
0.2432383032407795	0.2320333454446220	0.4933615954135943	Т	Т	Т
0.9106868453355121	0.5651144394095267	0.6714502988276043	Т	Т	Т
0.3473785096769433	0.9131343108421603	0.3472970745831461	F	F	F
0.0138376428887941	0.2431727126854084	0.5169835304258714	Т	Т	Т
0.6849302066422637	0.5732946563351607	0.6808446045427993	Т	Т	Т
0.3361367521384224	0.1680683760692148	0.3362396540223145	F	F	F
0.0033770545345658	0.5051697636669557	0.5060035213766770	Т	Т	Т
0.6768030556099109	0.8474735337364911	0.6695896307206323	Т	Т	Т
0.3361367521384295	0.6722735042768520	0.3362396540223145	F	F	F
0.0036652155240213	0.0030790942370231	0.5053037215688507	Т	Т	Т
0.6733184446655325	0.3378837004516030	0.6892271898344912	Т	Т	Т
0.2541842590098113	0.7461778751490158	0.3944775844339503	F	F	F
0.9219585109919451	0.0763691388351082	0.5653024490432083	Т	Т	Т
0.5934260847573514	0.4212218337260384	0.7329353977136296	Т	Т	Т
0.0094723336752622	0.5311979178146160	0.3799386832336822	F	F	F
0.6779418337985288	0.8622514581196958	0.5485523800133172	Т	Т	Т
0.3409608775750058	0.1963777071944381	0.7124834817538314	Т	Т	Т
0.9439217482440156	0.1009536314534927	0.3071906159917361	F	F	F
0.6082322100826510	0.4375541352971201	0.4732454235560060	Т	Т	Т
0.2828910732287889	0.7764270484885394	0.6605957001130667	Т	Т	Т
0.9074566249617817	0.8429681167905230	0.3071906159917361	F	F	F
0.5737727706559108	0.1773115212829676	0.4725798537518203	Т	Т	Т
0.2382301633862800	0.5077804435623474	0.6786697061009932	Т	Т	Т
0.5217255841393538	0.9989379227400192	0.3799386832336822	F	F	F
0.1924124688276860	0.3345454404764561	0.5504111727139035	Т	Т	Т
0.8507686881784088	0.6660902132057623	0.7164521320317504	Т	Т	Т
0.4100411230105863	0.8281303682776340	0.2780017236106858	F	F	F
0.0786825443748833	0.1605930244925457	0.4474704766076409	Т	Т	Т
0.7468023358114139	0.4895979579332608	0.6150985090328221	Т	Т	Т
0.3978860819165106	0.0618058007524454	0.3019131806672561	F	F	F
0.0624059583030114	0.3997740824850230	0.4716123327359488	Т	Т	Т
0.7227001922801661	0.7287891470277142	0.6399218666303513	Т	Т	Т
0.0083537854409172	0.7340228340549402	0.3705661273773728	F	F	F

0.6708961109158443	0.0637814748358349	0.5389424342999040	Т	Т	Т
0.7367620124481107	0.2351831206849297	0.3652886920528999	F	F	F
0.3962972292018760	0.5729841984975722	0.5361837208325596	Т	Т	Т
0.0718421419396710	0.9105867137804338	0.7080114423922272	Т	Т	Т
0.6723299752512091	0.6105241744987708	0.3019131806672561	F	F	F
0.3410617496276204	0.9462980970793158	0.4724995739456053	Т	Т	Т
0.0074805172945991	0.2790500209266236	0.6379556782342228	Т	Т	Т
0.7340793050292973	0.0000564709743571	0.3705661273773728	F	F	F
0.3984638853439720	0.3381976318329443	0.5398826723149766	Т	Т	Т
0.0724725152722380	0.6732473843099857	0.7055053012239978	Т	Т	Т
0.4919936161392044	0.7542259974054701	0.3944775844339503	F	F	F
0.1600420928560443	0.0861499552678247	0.5649144440537728	Т	Т	Т
0.8340885098648426	0.4153846610320791	0.7339672499800191	Т	Т	Т
0.5068313646520934	0.2716482439671637	0.3652886920528999	F	F	F
0.1818090783263110	0.6091205027011165	0.5395560644075044	Т	Т	Т
0.8414385448085455	0.9335380816177623	0.7080050764773403	Т	Т	Т
0.1654421396247585	0.0644885081712587	0.3071906159917361	F	F	F
0.8324923253709929	0.3986177272367389	0.4735348723426871	Т	Т	Т
0.5014687899139016	0.7331192243347868	0.6528180314401207	Т	Т	Т
0.9466044556628361	0.3360802811640724	0.3019131806672561	F	F	F
0.6066866150627402	0.6666407514980031	0.4729082292862552	Т	Т	Т
0.2758894594743814	0.0004594315708638	0.6436200545031867	Т	Т	Т
0.6628011706015897	0.8133490907390950	0.2925406248109539	F	F	F
0.3301758797286338	0.1457918890908664	0.4599969012245183	Т	Т	Т
0.9982096511810418	0.4777212779586466	0.6270455588382918	Т	Т	Т
0.2622323812662657	0.5164166402760770	0.3944775844339503	F	F	F
0.9292380778480052	0.8467164462469423	0.5654475902923017	Т	Т	Т
0.5855467475252533	0.1769396102648887	0.7352914834108233	Т	Т	Т
0.4772123386006655	0.4866846722759277	0.3799386832336822	F	F	F
0.1475065113728523	0.8188437496726967	0.5503252227382736	Т	Т	Т
0.8200223512156932	0.1577592223413984	0.7167951917447803	Т	Т	Т
0.4180892452670406	0.5983691334046952	0.2780017236106858	F	F	F
0.0853687396340789	0.9292064000746429	0.4478923319747615	Т	Т	Т
0.7461846751705845	0.2605544269072839	0.6156804082185114	Т	Т	Т
0.2743874223603413	0.2743309513859842	0.3705661273773728	F	F	F
0.9449357327045759	0.6101750463974757	0.5401951488901106	Т	Т	Т
0.6062185442790496	0.9381922927583286	0.7053719269961032	Т	Т	Т
0.1802798881376475	0.5903210111482409	0.2780017236106858	F	F	F
0.8490147139634594	0.9219008840428325	0.4464726329729786	Т	Т	Т
0.5216745337018605	0.2613341189766154	0.6132303782822828	Т	Т	Т
0.1505479201374982	0.3456090858136918	0.2925406248109539	F	F	F

0.8208755977275422	0.6781803301803920	0.4592838137657662	Т	Т	Т
0.4882759856501566	0.0165205651580170	0.6257110292124958	Т	Т	Т
0.1950611656761865	0.8578623362777833	0.2925406248109539	F	F	F
0.8636133802325497	0.1869981506035004	0.4589154456272324	Т	Т	Т
0.5164107875499319	0.5148746884662944	0.6331353107191199	Т	Т	Т
0.7732271357303446	0.5015788917631880	0.3652886920528999	F	F	F
0.4366308514393248	0.8329093074368344	0.5355443883260358	Т	Т	Т
0.0947771110450634	0.1633385920726788	0.7099764018096762	Т	Т	Т

The s	tructure of Pt _{b_surface} -O	_{b_vac} site on th	e surface-doped	$Pt/In_2O_3(111)$	model.
In Pt	0				

1.0	00000	00000	0000										
7	.2221	5000	120079	906	-12.50	91307	391902	2902	0.00000000)0000)0060	0	
0	.0000	00000	000000	000	8.33	94204	93717	8671	-11.79372156	53567	/558	5	
14	.6850)9925	505480)85	8.47	'84460	09861	8144	5.99516666	5799:	5705	2	
In	Pt	0											
47	,	1	71										
Selectiv	ve dy	namic	s										
Direct													
0.85	15836	53788	45805	0.4	089291	82634	5161	0.347	7297074583139	90	F	F	F
0.514	44163	84510	68643	0.7	420627	18245	5818	0.510	0323066387076	54	Т	Т	Ţ
0.17	80429	97206	99312	0.0	782018	348944	4792	0.685	519630859307	72	Т	Т	Ţ
0.82	91001	2280	75459	0.9	356178	325919	1950	0.325	5182233461490	00	F	F	F
0.49	59056	52534	75813	0.2	671136	67637	2907	0.496	5235839477059	9 9	Т	Т	Ţ
0.15	92789	95166	68620	0.6	048668	301519	3429	0.659	913099949810	19	Т	Т	1
0.324	48949	9459	99087	0.4	314126	597711	5507	0.325	5182233461490	00	F	F	F
0.994	44931	3493	26480	0.7	646160	034711	9347	0.493	398309405135	19	Т	Т	1
0.66	30093	85888	01829	0.1	028843	25123	1923	0.669	9106053209762	28	Т	Т	1
0.84	03418	88034	60667	0.6	722735	04276	8520	0.336	5239654022314	45	F	F	F
0.50	58053	84901	21125	0.0	051167	'95502	3209	0.505	5053986575002	20	Т	Т	1
0.17	00960)6229	01754	0.3	323419	947334	3198	0.670	0651043923094	49	Т	Т	1
0.10	65177	70311	16420	0.6	835152	261815	3728	0.325	5182233461490	00	F	F	F
0.77	62775	5805	87139	0.0	133518	37371	6017	0.493	3819871715004	47	Т	Т	1
0.42	54653	39468	04459	0.3	403589	86671	9128	0.660	0406075794543	30	Т	Т]
0.59	94810	07378	07654	0.4	426544	55250	0715	0.347	7297074583139	90	F	F	F
0.26	63864	5371	18484	0.7	770650	04000	2861	0.510	006452562456	12	Т	Т]
0.92	74357	71134	06366	0.1	055923	20647	1549	0.686	6054536969812	22	Т	Т]
0.09	52759	94557	31211	0.4	426544	55250	0715	0.347	7297074583146	51	F	F	F
0.76	56980)5189	26559	0.7	749139	63971	8148	0.516	5104717779823	38	Т	Т]
0.43	80271	4376	28180	0.1	200335	38480	7808	0.679	9496500142513	33	Т	Т	1
0.072	27924	3049	60865	0.9	018925	53303	6395	0.325	5182233461490	00	F	F	F
0.74	34647	4162	51251	0.2	280704	70034	3665	0.494	445169694561	75	Т	Т]
0.404	40903	37398	98303	0.5	606076	505962	5331	0.661	120479229017	57	Т	Т	1
0.56	57558	80116	52100	0.6	610317	46738	3382	0.347	7297074583146	51	F	F	F
0.23	39628	80877	70320	0.9	941668	320689	7645	0.518	820233891230	17	Т	Т	1
0.88	96192	23625	06908	0.3	222485	593970	1059	0.680	0045334716930	02	Т	Т	1
0.84	03418	88034	60667	0.1	680683	76069	2148	0.336	5239654022314	45	F	F	F
0.50	33936	50624	62513	0.5	024518	398253	5404	0.503	3067177236279	95	Т	Т	1
0.16	41263	9295	26402	0.8	353705	515361	7130	0.671	1827378238555	59	Т	Т	1
0.56	57558	30116	52100	0.1	568266	518530	6939	0.347	7297074583140	51	F	F	F

0.2315118870982441	0.4939470433690535	0.5106511281490932	Т	Т	Т
0.9041314568524513	0.8297066906054045	0.6846708700019517	Т	Т	Т
0.1065177031116420	0.1793101336077285	0.3251822334614900	F	F	F
0.7780536311955716	0.5129560602801641	0.4956726287178961	Т	Т	Т
0.4499655987505083	0.8518174347063420	0.6589838948894829	Т	Т	Т
0.5769975587037308	0.9018925533036395	0.3251822334614900	F	F	F
0.2414460985867522	0.2313532263192414	0.4919607183361330	Т	Т	Т
0.9106098219798667	0.5647069848680675	0.6703374171928879	Т	Т	Т
0.3473785096769433	0.9131343108421603	0.3472970745831461	F	F	F
0.0136382217091421	0.2434094773385411	0.5178974908450326	Т	Т	Т
0.6908771409771540	0.5784058745456029	0.6757877193524910	Т	Т	Т
0.3361367521384224	0.1680683760692148	0.3362396540223145	F	F	F
0.0023287728414916	0.5038929113398355	0.5059152349786529	Т	Т	Т
0.6767990242216968	0.8472878289079384	0.6701296348312589	Т	Т	Т
0.3361367521384295	0.6722735042768520	0.3362396540223145	F	F	F
0.0044441779200839	0.0038850973832904	0.5060174382320658	Т	Т	Т
0.6684856226187866	0.3440988355575483	0.6735611983237193	Т	Т	Т
0.2541842590098113	0.7461778751490158	0.3944775844339503	F	F	F
0.9215131005983579	0.0767326739149771	0.5663631047559983	Т	Т	Т
0.0094723336752622	0.5311979178146160	0.3799386832336822	F	F	F
0.6756351915361520	0.8604029773630290	0.5490634984344334	Т	Т	Т
0.3410407149092538	0.1898068342848915	0.7150315351502363	Т	Т	Т
0.9439217482440156	0.1009536314534927	0.3071906159917361	F	F	F
0.6088001177229758	0.4374713599149443	0.4734794942040625	Т	Т	Т
0.2828571806819339	0.7768320751954374	0.6627679041252605	Т	Т	Т
0.9074566249617817	0.8429681167905230	0.3071906159917361	F	F	F
0.5723754420051761	0.1767388221939826	0.4742499052087940	Т	Т	Т
0.2327302576278528	0.5112530494417888	0.6605805038359217	Т	Т	Т
0.5217255841393538	0.9989379227400192	0.3799386832336822	F	F	F
0.1907279595118423	0.3324997128218064	0.5495065560314267	Т	Т	Т
0.8507383102790524	0.6664836756461948	0.7159800584868222	Т	Т	Т
0.4100411230105863	0.8281303682776340	0.2780017236106858	F	F	F
0.0774989509290452	0.1594568304992410	0.4473360864943011	Т	Т	Т
0.7454178435400859	0.4886441617849516	0.6142962090061371	Т	Т	Т
0.3978860819165106	0.0618058007524454	0.3019131806672561	F	F	F
0.0629022000317264	0.4000267545418107	0.4726813268170205	Т	Т	Т
0.7273949755104676	0.7336046107601746	0.6382217329812582	Т	Т	Т
0.0083537854409172	0.7340228340549402	0.3705661273773728	F	F	F
0.6673911839520204	0.0585496136211405	0.5355267106500831	Т	Т	Т
0.3313743210242923	0.4020947301668266	0.7054560586979789	Т	Т	Т
0.7367620124481107	0.2351831206849297	0.3652886920528999	F	F	F

0.4005753555857676	0.5704790642454671	0.5391318737254169	Т	Т	Т
0.0726701945552358	0.9107817367903627	0.7097707000348553	Т	Т	Т
0.6723299752512091	0.6105241744987708	0.3019131806672561	F	F	F
0.3411513765631272	0.9456759715238078	0.4730905932352471	Т	Т	Т
0.0082085407848061	0.2805905766771544	0.6401016957411624	Т	Т	Т
0.7340793050292973	0.0000564709743571	0.3705661273773728	F	F	F
0.3970927309682556	0.3389781786630318	0.5381564226522181	Т	Т	Т
0.0714372561953384	0.6739291480835531	0.7059269680527704	Т	Т	Т
0.4919936161392044	0.7542259974054701	0.3944775844339503	F	F	F
0.1609095900864847	0.0872817236849406	0.5657348241531807	Т	Т	Т
0.8142989863087684	0.4094897288685947	0.7263785500168290	Т	Т	Т
0.5068313646520934	0.2716482439671637	0.3652886920528999	F	F	F
0.1782228163587360	0.6100837841055375	0.5372224594197658	Т	Т	Т
0.8420285372294464	0.9349918657064245	0.7093584845492301	Т	Т	Т
0.1654421396247585	0.0644885081712587	0.3071906159917361	F	F	F
0.8326891832508710	0.3985728155154050	0.4729874070701329	Т	Т	Т
0.4993224098116187	0.7269272065393854	0.6619564704558234	Т	Т	Т
0.9466044556628361	0.3360802811640724	0.3019131806672561	F	F	F
0.6079988928477075	0.6668279692257679	0.4726988851670414	Т	Т	Т
0.2766530185401472	0.0001669814434895	0.6419583539804924	Т	Т	Т
0.6628011706015897	0.8133490907390950	0.2925406248109539	F	F	F
0.3308618482303172	0.1463685225774713	0.4609115997294877	Т	Т	Т
0.9950668229791066	0.4776593743249350	0.6293476243849752	Т	Т	Т
0.2622323812662657	0.5164166402760770	0.3944775844339503	F	F	F
0.9313788610647881	0.8478680269105111	0.5657103172763452	Т	Т	Т
0.5975083879763882	0.1973971880564440	0.7262396162358885	Т	Т	Т
0.4772123386006655	0.4866846722759277	0.3799386832336822	F	F	F
0.1469159054587232	0.8180124804821908	0.5506973452398446	Т	Т	Т
0.8208993091276284	0.1585237181265251	0.7214300745417720	Т	Т	Т
0.4180892452670406	0.5983691334046952	0.2780017236106858	F	F	F
0.0861635317216290	0.9297539720485278	0.4482402333398083	Т	Т	Т
0.7567766136651739	0.2518514654818088	0.6084260724239671	Т	Т	Т
0.2743874223603413	0.2743309513859842	0.3705661273773728	F	F	F
0.9427940983496370	0.6089864710737525	0.5413350699277326	Т	Т	Т
0.6074032178705331	0.9396920813144303	0.7036200158724121	Т	Т	Т
0.1802798881376475	0.5903210111482409	0.2780017236106858	F	F	F
0.8494066210340212	0.9220583418686458	0.4470886117026101	Т	Т	Т
0.5210719631606825	0.2730055785314461	0.6168176700320059	Т	Т	Т
0.1505479201374982	0.3456090858136918	0.2925406248109539	F	F	F
0.8212394512957965	0.6782460349075130	0.4598626968572128	Т	Т	Т
0.4893414748203754	0.0174143057790597	0.6279797698912470	Т	Т	Т

0.8578623362777833	0.2925406248109539	F	F	F
0.1853557042356371	0.4578768723348168	Т	Т	Т
0.5116804393570299	0.6374434910292263	Т	Т	Т
0.5015788917631880	0.3652886920528999	F	F	F
0.8291680002457963	0.5377716836417862	Т	Т	Т
0.1655116270560691	0.7088954979694451	Т	Т	Т
	0.8578623362777833 0.1853557042356371 0.5116804393570299 0.5015788917631880 0.8291680002457963 0.1655116270560691	0.85786233627778330.29254062481095390.18535570423563710.45787687233481680.51168043935702990.63744349102922630.50157889176318800.36528869205289990.82916800024579630.53777168364178620.16551162705606910.7088954979694451	0.85786233627778330.2925406248109539F0.18535570423563710.4578768723348168T0.51168043935702990.6374434910292263T0.50157889176318800.3652886920528999F0.82916800024579630.5377716836417862T0.16551162705606910.7088954979694451T	0.85786233627778330.2925406248109539FF0.18535570423563710.4578768723348168TT0.51168043935702990.6374434910292263TT0.50157889176318800.3652886920528999FF0.82916800024579630.5377716836417862TT0.16551162705606910.7088954979694451TT

The structure of Pt _{b_}	_{bulk} -O _{c_vac} site on the b	ulk-doped $Pt/In_2O_3(1)$	11) n	lode	l.
n Pt In O					
1.000000000000000					
7.2221500012007	906 -12.509130739190	2902 0.0000000000	00006	0	
0.000000000000000	000 8.339420493717	48671 -11.79372156356	57558	5	
14.6850992550548	085 8.478446009861	.8144 5.99516666799	95705	52	
In Pt In O					
46 1 1	71				
Selective dynamics					
Direct					
0.8515836378845805	0.4089291826345161	0.3472970745831390	F	F	F
0.5140644324236991	0.7427620229964087	0.5105878300073140	Т	Т	Т
0.1766902928655739	0.0764841071297987	0.6836994673266034	Т	Т	Т
0.8291001228075459	0.9356178259191950	0.3251822334614900	F	F	F
0.4956303587476827	0.2666788646373073	0.4966492216034552	Т	Т	Т
0.1601430720508848	0.6026358488075120	0.6605764215066546	Т	Т	Т
0.3248949945999087	0.4314126977115507	0.3251822334614900	F	F	F
0.9924621731904772	0.7636886773674421	0.4929885845740931	Т	Т	Т
0.6591507019240208	0.0997335346358127	0.6711746948231420	Т	Т	Т
0.8403418803460667	0.6722735042768520	0.3362396540223145	F	F	F
0.5068833895094028	0.0067773254202166	0.5042432214488231	Т	Т	Т
0.1772055381113772	0.3307079818001839	0.6716740851170948	Т	Т	Т
0.1065177031116420	0.6835152618153728	0.3251822334614900	F	F	F
0.7774052027323788	0.0164978972382845	0.4935343558128613	Т	Т	Т
0.4475395178335740	0.3480080632484079	0.6653635640131571	Т	Т	Т
0.5994810737807654	0.4426544552500715	0.3472970745831390	F	F	F
0.2672110537485038	0.7770364483461150	0.5104088586011829	Т	Т	Т
0.9299512039023639	0.1039819740945987	0.6846522119789811	Т	Т	Т
0.0952759455731211	0.4426544552500715	0.3472970745831461	F	F	F
0.7639394689456689	0.7744519613352346	0.5161754974917153	Т	Т	Т
0.4351634726148905	0.1172431446641152	0.6783617721440102	Т	Т	Т
0.0727924304960865	0.9018925533036395	0.3251822334614900	F	F	F
0.7425492398702968	0.2313093825002490	0.4983284754038561	Т	Т	Т
0.4046858932990643	0.5648725177378805	0.6572709261448455	Т	Т	Т
0.5657558011652100	0.6610317467383382	0.3472970745831461	F	F	F
0.2330446902656738	0.9929546137157192	0.5172172097177228	Т	Т	Т
0.8940268861915768	0.3224552883775441	0.6780015301411285	Т	Т	Т
0.8403418803460667	0.1680683760692148	0.3362396540223145	F	F	F
0.5006280651800723	0.5015402424517731	0.5030043685158843	Т	Т	Т
0.1616345967242424	0.8333832687755323	0.6698358308684962	Т	Т	Т
0.5657558011652100	0.1568266185306939	0.3472970745831461	F	F	F

Thest f D4 0 ւ J D4/I (111) dal 11 <u>
</u>

0.2303310191591664	0.4931109179108396	0.5081322670279343	Т	Т	Т
0.9025331238423073	0.8282875238882919	0.6840171526842901	Т	Т	Т
0.1065177031116420	0.1793101336077285	0.3251822334614900	F	F	F
0.7768948407513958	0.5131118158175267	0.4979447409439833	Т	Т	Т
0.4494608575798271	0.8530970046088893	0.6566904293680145	Т	Т	Т
0.5769975587037308	0.9018925533036395	0.3251822334614900	F	F	F
0.2439354272272909	0.2315611097975864	0.4924926238019418	Т	Т	Т
0.9102194895497998	0.5637217327811656	0.6706870125799957	Т	Т	Т
0.3473785096769433	0.9131343108421603	0.3472970745831461	F	F	F
0.0158577000954202	0.2442414997742089	0.5177688838746987	Т	Т	Т
0.6855038468795808	0.5733680965684473	0.6792245016646110	Т	Т	Т
0.3361367521384224	0.1680683760692148	0.3362396540223145	F	F	F
0.0033319305496261	0.5054994821486778	0.5051306092160451	Т	Т	Т
0.6766410512715554	0.8478717105096863	0.6681387632260795	Т	Т	Т
0.3361367521384295	0.6722735042768520	0.3362396540223145	F	F	F
0.0039459945712938	0.0034449206399607	0.5058905278506660	Т	Т	Т
0.6728458496528704	0.3376225019038003	0.6890644850969084	Т	Т	Т
0.2541842590098113	0.7461778751490158	0.3944775844339503	F	F	F
0.9293433463131867	0.0735446512611372	0.5622607410812681	Т	Т	Т
0.5931871439528108	0.4218364495727688	0.7326924860622437	Т	Т	Т
0.0094723336752622	0.5311979178146160	0.3799386832336822	F	F	F
0.6793280644101294	0.8636877530766407	0.5465855768748524	Т	Т	Т
0.3394561234226149	0.1942900027193413	0.7106379127902328	Т	Т	Т
0.9439217482440156	0.1009536314534927	0.3071906159917361	F	F	F
0.6083089866880114	0.4379161442229675	0.4734541289967611	Т	Т	Т
0.2820120708730500	0.7777359241152615	0.6580721415828314	Т	Т	Т
0.9074566249617817	0.8429681167905230	0.3071906159917361	F	F	F
0.5731838531054667	0.1768348147170957	0.4730340177140030	Т	Т	Т
0.2377419194090969	0.5108082061920968	0.6740050573107570	Т	Т	Т
0.5217255841393538	0.9989379227400192	0.3799386832336822	F	F	F
0.1910934635359919	0.3321078450249222	0.5471375564106956	Т	Т	Т
0.8519015946363352	0.6676543747964545	0.7138273952062060	Т	Т	Т
0.4100411230105863	0.8281303682776340	0.2780017236106858	F	F	F
0.0748935292170952	0.1487374033143720	0.4500847174152147	Т	Т	Т
0.7471038184551456	0.4888996351920167	0.6148250260234529	Т	Т	Т
0.3978860819165106	0.0618058007524454	0.3019131806672561	F	F	F
0.0625587909811741	0.3994916012656501	0.4715558322448228	Т	Т	Т
0.7268998228545924	0.7317523037219976	0.6378001474556400	Т	Т	Т
0.0083537854409172	0.7340228340549402	0.3705661273773728	F	F	F
0.6712588917312609	0.0640443462519714	0.5393411874373445	Т	Т	Т
0.7367620124481107	0.2351831206849297	0.3652886920528999	F	F	F

0.3961900794437526	0.5716573977341588	0.5358113579650542	Т	Т	Т
0.0708164369659432	0.9086410878387484	0.7072119548789332	Т	Т	Т
0.6723299752512091	0.6105241744987708	0.3019131806672561	F	F	F
0.3402256118861722	0.9457290728094764	0.4722381896633815	Т	Т	Т
0.0105202756174768	0.2772611823229675	0.6383525026461777	Т	Т	Т
0.7340793050292973	0.0000564709743571	0.3705661273773728	F	F	F
0.3979509034964979	0.3376548398400999	0.5398850481021332	Т	Т	Т
0.0720322766424246	0.6728602210374091	0.7043748367874915	Т	Т	Т
0.4919936161392044	0.7542259974054701	0.3944775844339503	F	F	F
0.1491611118453568	0.0786520096250295	0.5618365372649828	Т	Т	Т
0.8342152940637999	0.4141410503644049	0.7334541192695255	Т	Т	Т
0.5068313646520934	0.2716482439671637	0.3652886920528999	F	F	F
0.1805315322858237	0.6093906850260248	0.5383358097521227	Т	Т	Т
0.8413378081575922	0.9345350337897737	0.7070578882098069	Т	Т	Т
0.1654421396247585	0.0644885081712587	0.3071906159917361	F	F	F
0.8329495123954804	0.3988393697986977	0.4737085481191511	Т	Т	Т
0.5018277617242883	0.7317324250665189	0.6510788629606753	Т	Т	Т
0.9466044556628361	0.3360802811640724	0.3019131806672561	F	F	F
0.6071298488329843	0.6674932873831874	0.4724375896237019	Т	Т	Т
0.2734873540340686	0.0008859912112453	0.6406598063223978	Т	Т	Т
0.6628011706015897	0.8133490907390950	0.2925406248109539	F	F	F
0.3285722433035433	0.1447406758352429	0.4610843347099443	Т	Т	Т
0.9972163486298431	0.4765332299712851	0.6259637986250680	Т	Т	Т
0.2622323812662657	0.5164166402760770	0.3944775844339503	F	F	F
0.9332715268828188	0.8582234758115713	0.5619161900799012	Т	Т	Т
0.5849515015105737	0.1760299181198327	0.7342635654908055	Т	Т	Т
0.4772123386006655	0.4866846722759277	0.3799386832336822	F	F	F
0.1456424016250452	0.8190931214244587	0.5480587747645645	Т	Т	Т
0.8204504738864007	0.1557252393407261	0.7134768564853020	Т	Т	Т
0.4180892452670406	0.5983691334046952	0.2780017236106858	F	F	F
0.0780483830698038	0.9327006025190614	0.4502530798406537	Т	Т	Т
0.7460009978048637	0.2604097616455022	0.6151877851947916	Т	Т	Т
0.2743874223603413	0.2743309513859842	0.3705661273773728	F	F	F
0.9442955523113458	0.6104975336964832	0.5402025375589125	Т	Т	Т
0.6053632569115425	0.9374269976322844	0.7043013116122279	Т	Т	Т
0.1802798881376475	0.5903210111482409	0.2780017236106858	F	F	F
0.8598837388502033	0.9297940289809760	0.4495251073271653	Т	Т	Т
0.5213485878727087	0.2627199459412165	0.6133202836024254	Т	Т	Т
0.1505479201374982	0.3456090858136918	0.2925406248109539	F	F	F
0.8211868179696818	0.6799101877789665	0.4603509209193510	Т	Т	Т
0.4866350963123519	0.0155795983841390	0.6250886296220661	Т	Т	Т

0.8578623362777833	0.2925406248109539	F	F	F
0.1868470951527732	0.4603014684761499	Т	Т	Т
0.5173735539974247	0.6304518049700721	Т	Т	Т
0.5015788917631880	0.3652886920528999	F	F	F
0.8326498968546051	0.5350246282591797	Т	Т	Т
0.1611203373769022	0.7103292411682827	Т	Т	Т
	0.8578623362777833 0.1868470951527732 0.5173735539974247 0.5015788917631880 0.8326498968546051 0.1611203373769022	0.85786233627778330.29254062481095390.18684709515277320.46030146847614990.51737355399742470.63045180497007210.50157889176318800.36528869205289990.83264989685460510.53502462825917970.16112033737690220.7103292411682827	0.85786233627778330.2925406248109539F0.18684709515277320.4603014684761499T0.51737355399742470.6304518049700721T0.50157889176318800.3652886920528999F0.83264989685460510.5350246282591797T0.16112033737690220.7103292411682827T	0.85786233627778330.2925406248109539FF0.18684709515277320.4603014684761499TT0.51737355399742470.6304518049700721TT0.50157889176318800.3652886920528999FF0.83264989685460510.5350246282591797TT0.16112033737690220.7103292411682827TT