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Materials and Methods

Chemicals

Nickel (II) nitrate hexahydrate (Ni(NO3)2.6H2O, 98%), Iron (III) chloride hexahydrate (FeCl3.6H2O, 

99%), Cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O, 99%), Hexamethylenetetramine (C6H12N4, 

99%)  dium hydroxide(NaOH, 99.9%), Sodium chloride (NaCl, 99%), Hydrochloric acid (HCl, 37%) 

were purchased from Sigma-Aldrich (Germany). Nickel foam was purchased from Alfa Aesar. All 

chemicals were used as purchased without further treatment.

Fabrication of the NF-LDH: 

The as obtained nickel foam was first subjected to acid treatment for removing the oxide layer and 

impurities form the surface. The NF has been sonicated for the 5 min with the HCL solution (37 wt%). 

Hydrothermal method was used for the fabrication of the NF-LDH. In 50 ml deionized water (DI) 4 mmol 

of Ni(NO3)2.6H2O, 1 mmol of FeCl3.6H2O and 2 mmol of C6H12N4 were dissolved and stirred for 30 

minutes. After this the solution has been transferred to the 100 mL autoclave containing NF and kept in 

oven at 130°C for 10 h. After this the obtained NF-LDH was washed and dried in the over at 60°C for 

12 h.   

Fabrication of the CNF-LDH: 

The fabrication process for the CNF-LDH is also like the NF-LDH except the addition of the 0.15 mmol 

of the Ce(NO3)3.6H2O in the same solution.  

Fabrication of the CNF-LDH-E: 

After the synthesis of the CNF-LDH-E the electrode was immersed in the highly diluted acid solution of 

HCl (0.1 mM), the solution was heated in the sealed tube at 85°C for the 8 h. After this the electrode was 

removed, washed properly with ethanol and water and dried. The obtained electrode was further subjected 

to the nonthermal oxygen plasma treatment for the 120 seconds. Finally, the electrode was dipped in the 

0.5 M NaBH4 solution for the 30 min. The as obtained CNF-LDH-E was cleaned and dried properly for 

the further use. Similar method was used for the fabrication of the NF-LDH-E.          
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X-ray absorption spectroscopy

The synchrotron-based X-ray absorption spectroscopy was performed on 1D, 8C, and 10D beamlines 

of the Pohang Acceleration Laboratory (PAL, Korea) in top-up mode at 3.0 GeV with maximum ring 

current of 300 mA. To ensure accurate measurements, the harmonics of the incident X-ray beam were 

adjusted using a double crystal monochromator (DCM) with Si(111) crystals. Prior to data acquisition, 

energy calibration was performed using reference metallic foils. Specifically, Ir, Ni and Re transmission 

mode was employed to acquire the XAS data, with Fe, Ni and Ce metallic foils serving as reference 

standards. Subsequent data analysis was conducted using the ATHENA software suite1, 2. For the 

visualization of wavevector and interatomic distance (R) data in three dimensions, continuous Cauchy 

Wavelet Transform (CCWT) analysis was conducted. The analysis utilized k2-weighted signals over a k-

space range of 2.0 – 12.0 Å–1. Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra were 

obtained for the Ni K, Fe K and Ce L3 edges, at the 10D beamline equipped with a bending magnet at 

PAL. Measurements were performed at room temperature with a resolution of 0.01 eV. Spectra were 

acquired in both total electron yield (TEY) and fluorescence yield (FY) modes under a base pressure of 

3×10–10 Torr.

Electrochemical measurements

The electrocatalytic performance was assessed using a three-electrode system connected and operated 

by a potentiostation (Autolab PGSTAT; Metrohm) under alkaline and seawater conditions (1M KOH, 

1M KOH+ 0.5 M NaCl).  The three-electrode system contains the self-standing catalysts as a working 

electrode, Ag/AgCl is used as a reference electrode and graphitic electrode as a counter electrode. Purging 

of the N2 in the electrolyte was performed before starting any electrochemical measurement. The exposed 

surface area of the working electron in the electrolyte was 1 Cm2. The ink preparation for the IrO2 and 

Pt/C was carried out by using 5 mg of each sample and dissolved in the 490 µL of the ethanol and 10 µL 

of nafion. Out of this 30 µL was drop casted over the nickel foam (NF). All the polarization curves were 

taken at the scan rate of the 5mV s-1. The conversion of the potential to the reversible hydrogen electrode 

(RHE) by performed by the equation, E(RHE) = E(Ag/AgCl) + 0.059 pH + Eo (Ag/AgCl). 90% iR 

correction were performed to the polarization curves. Electrochemical impedance spectroscopy (EIS) 

was performed at 1.57 VRHE in a frequency range from 0.1 to 100 kHz with a sinusoidal amplitude of 5 

mV. Tafel plots were obtained using the iR-corrected LSV polarization curves. The Tafel slopes were 

calculated using the equation: η = b log j + a, where (b: Tafel slope, j: current density, η: overpotential).
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Density functional theory calculations

The first-principle calculations were conducted based on density functional theory (DFT) using the 

exchange-correlation energy function correlated by Perdew-Burke-Ernzerhof (PBE) with the generalized 

gradient approximation (GGA). [1] Self-consistent electronic density functional and total energy was 

obtained with the pseudopotential using the Vienna ab initio simulation package (VASP) code [2]. The 

plane wave basis set extended to 520 eV energy cutoff. In cases of transition metal cations, the 

pseudopotentials involving electrons in p and d orbitals of Ni and Fe as valence electrons (Ni_pv and 

Fe_pv) were used. Also, GGA+U correction scheme for transition metal cations such as Ni and Fe was 

adopted to correct energy of strongly correlated 3d orbitals. [3] The Hubbard U values on Ni and Fe used 

in this calculation were 6.2 eV and 5.3 eV, respectively. The self-consistent loop was repeated until the 

total energy difference of systems between the adjacent repeating steps were less than 10-5 eV. To 

calculate wave functions in the LDH, only Γ-point was considered in irreducible Brillouin zone. Two 

different slab models with the lowest surface energy of Ni0.9Fe0.1(OH)2 (001) and Ni3Fe (111) were 

generated to calculate surface reactions. Those slab models were optimized by conjugate-gradient method 

[4] with DFT-D2 Van der Waals energy correction [5] until the maximum Hellmann-Feynman force 

became in ±0.025 eV/Å.

Supplementary Notes

Supplementary Note 1. Calculation of electrochemical surface area (ECSA)

Cyclic voltammetry curves were taken in the non-faradaic range in N2-saturated 1M KOH solution, 

Further the differences in the current densities (Janodic-Jcathodic) were plotted against the multiple scan rates. 

The slope of this curve is the measured double-layer capacitance (Cdl).   

The higher the Cdl higher will be the ECSA. The specific capacitance used for the calculation of the 

ECSA is 0.04 mF cm-2. Then, the ECSA is calculated using the formula.

                   ECSA =                 

𝐶𝑑𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 (𝑚𝐹 𝑐𝑚 ‒ 2)

0.04 (𝑚𝐹 𝑐𝑚 ‒ 2) 
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Figure S1. XPS survey spectra of the NF-LDH and CNF-LDH-E
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Figure S2: XPS spectra of the Ce3d present in CNF-LDH-E 
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Figure S3. Atomic percentage of the Ce, Ni, Fe and O present in the catalyst by EDX
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Figure S4. XANES spectra of Ce-L3 edge 
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Figure S5: CCWT plot of Ce-L3edge in CNF-LDH-E and CeO2 
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Figure S6: EXAFS spectra of Fe-Ledge, Ni-Kedge and Ce-L3edge 
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Figure S7: CCWT plot of Fe2O3, Fe-foil, NiO and Ni-foil 



14

   Figure S8: ECSA normalized OER activity 
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Figure S9: cyclic voltammetry curve in the non-faradaic region for the (a) CNF-LDH-E, (b) CNF-LDH, 
(C) NF-LDH-E, (e) NF-LDH 
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Figure S10: ECSA normalized LSV curve for the HER 
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Figure S11: Digital photographs for iodide titration experiments for (upper) NaClO reference solution 
and (lower) the electrolyte solution after 30 h at 100 mA cm-2 in 1 M KOH and 0.5 M NaCl using CNF-

LDH-E as a working electrode.  
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Figure S12. Tafel plots of all the catalyst in the electrolyte containing 1M KOH + 0.5 M NaCl  
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Figure S13: (a) TEM image of the catalyst after durability test for HER, (b) SAED pattern, (c-g) 
STEM-EDS mapping  
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Figure S14: (a) TEM image of the catalyst after durability test for OER, (b) SAED pattern, (c-g) 
STEM-EDS mapping  
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Figure S15: PXRD pattern of the catalyst after durability test for OER
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Figure S16: PXRD pattern of the catalyst after durability test for OER
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Figure S17. (a) polarization curve of the catalyst in the real alkaline seawater for OER (b) 
corresponding durability test (c) Polarization curve of CNF-LDH-E for the HER (d) corresponding 

durability test.
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Table S1: Comparison of the overall water splitting behavior of our catalyst with the recently publishes 
state of the art catalyst in 1M KOH 

Catalyst Overpotential (HER) 
(mV)

Overpotential (OER)
(mV)

Reference (Journal)

Ir@Ni-NDC 74@10 mAcm-2 210@10 mAcm-2 6 (Angew. Chem.)

CPF-Fe/Ni 201@10 mAcm-2 194@10 mAcm-2 7 (Nature Comm.)

Ni2P/FeP-FF 42@10 mAcm-2 217@10 mAcm-2 8 (AFM)

Ru@V-RuO2 201@10 mAcm-2 6@10 mAcm-2 9 (Adv. Mater.)

V-NiS/NiS2 94@10 mAcm-2 220@10 mAcm-2 10 (Adv. Energy 
Mater.)

Mn-NiCoP 148@100 mAcm-2 266@100 mAcm-2 11 (Nano Energy)

Ni2P-MnP@Co2P 60@10 mAcm-2 255@30 mAcm-2 12 (Appl. Cat. B)

FeNi(OH)x@NF 210@50 mAcm-2 198@10 mAcm-2 13 (Small)

CuNi@NiSe 42@10 mAcm-2 293@10 mAcm-2 14 (Small)

Mo-NIFeP/NIF 186@50 mAcm-2 227@50 mAcm-2 15 (Chem. Eng. J.)

MnCo2S4@MoS2 208@1000 mAcm-2 332@1000 mAcm-2 16 (Chem. Eng. J.)

AF0.1-FNMO/IF 345@500 mAcm-2 289@500 mAcm-2 17 (CCL)

Fe2P/Co2N 131@500 mAcm-2 283@500 mAcm-2 18 (AFM)

IF-Ni 150 mM 128@100 mAcm-2 - 19 (ACS Nano)

CNF-LDH-E 162@100 mAcm-2 154@100 mAcm-2 This work
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Table S2: Comparison of the overall water splitting behavior of our catalyst with the recently publishes 
state of the art catalyst in 1M KOH+0.5M NaCl 

Catalyst Overpotential (HER)
(mV)

Overpotential (OER)
(mV)

Reference (Journal)

Fe0.74Co0.26)2P/Ni3N 113@100 mAcm-2 212@100 mAcm-2 20 (Small)

RuNCs/P,O-
NiFeLDH/NF

175@10 mAcm-2 29@10 mAcm-2 21 (AFM)

Ni2P-Fe2P 252@100 mAcm-2 305@100 mAcm-2 22 (AFM)

c-NF//a-NF-LDH NS 200@100 mAcm-2 300@100 mAcm-2 23 (AFM)

NiMoN@NiFeN -- 286@100 mAcm-2 24 (Nature Comm.)

Mn-doped Ni2P/Fe2P 470@1000 mAcm-2 358@1000 mAcm-2 25 (Chem. Eng. J.)

N-NiMo3P 35@10 mAcm-2 346@10 mAcm-2 26 (Small)

FMCO/NF 248@50 mAcm-2 328@50 mAcm-2 27 (Appl. Cat. B)

CoxPv@NC 206@500 mAcm-2 323@500 mAcm-2 28 (Nano energy)

NiFeLDH/FeOOH 181@10 mAcm-2 286@100 mAcm-2 29 (ACS IC)

CNF-LDH-E 281@100 mAcm-2 290@100 mAcm-2 This work
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Table S3. Surface energies pf the different plane obtained from the DFT calculations

 Plane Total E (eV)  surface area X 2 surface E (eV/A3)
(001)_surf -213.082 Ce1Fe2Ni5O16H16 151.602816 0.012 
(010)_surf -209.268 Ce1Fe2Ni5O16H16 60.092672 0.093 
(100)_surf -211.263 Ce1Fe2Ni5O16H16 104.824884 0.034 
(110)_surf -209.61 Ce1Fe2Ni5O16H16 120.823464 0.044 
(111)_surf -415.042 Ce2Fe4Ni10O32H32 285.539084 0.051 
(012)_surf -1070.069 Ce5Fe10Ni25O80H80 306.5281044 0.014 
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