Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2024

High-throughput selection of (new) enzymes: phage display-mediated isolation of alkylhalide hydrolases from a library of active-site mutated epoxide hydrolases

Marija Blazic, Candice Gautier, Thomas Norberg and Mikael Widersten,*

Department of Chemistry – BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden

* mikael.widersten@kemi.uu.se

Index

Supporting Tables

Table S1 Oligonucleotides used in the construction of mutant cDNA library	2
Table S2 Deduced amino acid sequences of selected protein variants	4

Supporting Figures

igure S1 Synthesis of building block 6
igure S2 Block synthesis of bait substrate 8
igure S3 TLC chromatograms of synthesis intermediates leading to compound 8
igure S4 ¹ H-NMR spectrum of compound 2
igure S5 ¹ H-NMR and COESY spectra of compound 3
igure S6 ¹ H- and ¹³ C-NMR spectra of compound 4
igure S7 ¹ H- and ¹³ C-NMR spectra of compound 6 10
igure S8 Fig. S8 ¹ H- and ¹³ C-NMR spectra of compound 8 11
igure S9 Silent mutations (in yellow) in the StEH1 cDNA that removes an <i>Ncol</i> site at codons 30 – 32 and introduces a unique <i>Pau</i> l site at codons 107 – 109
Figure S10 Standard curve of peak area as a function of amount of alcohol 11 12

Supporting Tables

 Table S1 Oligonucleotides used in the construction of mutant cDNA library

Name	Sequence $5' \rightarrow 3'$	Ratios in PCR	Mutation(s)	Note	
Fp_PUC	CCCAGTCACGACGTTGTAAAACG		-	Fragment 1, forward primer	
Rp_HYX1	TATAGCCTTTAGCCCCTCAAC		-	Fragment 1, reverse primer	
Fp_HYN1A	GCTAAAGGCTATATATGGGGAAGATNDTNDTATATCGAGATTTCAGGTACCGG	144			
	GCTAAAGGCTATATATGGGGAAGATNDTVMAATATCGAGATTTCAGGTACCGG	72			
	GCTAAAGGCTATATATGGGGAAGATNDTATGATATCGAGATTTCAGGTACCGG	12			
	GCTAAAGGCTATATATGGGGAAGATNDTTGGATATCGAGATTTCAGGTACCGG	12			
Fp_HYV1B	GCTAAAGGCTATATATGGGGAAGATVMAVMAATATCGAGATTTCAGGTACCGG	36			
	GCTAAAGGCTATATATGGGGAAGATVMANDTATATCGAGATTTCAGGTACCGG	72			
	GCTAAAGGCTATATATGGGGAAGATVMAATGATATCGAGATTTCAGGTACCGG	6	H153X, Y154X	Fragment A, forward primer	
	GCTAAAGGCTATATATGGGGAAGATVMATGGATATCGAGATTTCAGGTACCGG	6	1		
Fp_HYA1C	GCTAAAGGCTATATATGGGGAAGATATGATGATATCGAGATTTCAGGTACCGG	1	1		
	GCTAAAGGCTATATATGGGGAAGATATGNDTATATCGAGATTTCAGGTACCGG	12]		
	GCTAAAGGCTATATATGGGGAAGATATGVMAATATCGAGATTTCAGGTACCGG	6]		
	GCTAAAGGCTATATATGGGGAAGATATGTGGATATCGAGATTTCAGGTACCGG	1]		
Fp_HYT1D	GCTAAAGGCTATATATGGGGAAGATTGGTGGATATCGAGATTTCAGGTACCGG	1]		
	GCTAAAGGCTATATATGGGGAAGATTGGNDTATATCGAGATTTCAGGTACCGG	12			
	GCTAAAGGCTATATATGGGGAAGATTGGVMAATATCGAGATTTCAGGTACCGG	6			
	GCTAAAGGCTATATATGGGGAAGATTGGATGATATCGAGATTTCAGGTACCGG	1			
Rp_PF1	CTGTATGGCGCTAGGAC			Fragment A, reverse primer	
Fp_PFN1A	ACATACCGCGATCCTGCANDTNDTTATTTTCCTAAAGGCAAAGGCC	144	P188X, F189X	Fragment B, forward primer	
	ACATACCGCGATCCTGCANDTVMATATTTTCCTAAAGGCAAAGGCC	72			
	ACATACCGCGATCCTGCANDTATGTATTTTCCTAAAGGCAAAGGCC	12			
	ACATACCGCGATCCTGCANDTTGGTATTTTCCTAAAGGCAAAGGCC	12]		
Fp_PFV1B	ACATACCGCGATCCTGCAVMAVMATATTTTCCTAAAGGCAAAGGCC	36]		

	ACATACCGCGATCCTGCAVMANDTTATTTTCCTAAAGGCAAAGGCC	72				
	ACATACCGCGATCCTGCAVMAATGTATTTTCCTAAAGGCAAAGGCC	6				
	ACATACCGCGATCCTGCAVMATGGTATTTTCCTAAAGGCAAAGGCC	6				
Fp_PFA1C	ACATACCGCGATCCTGCAATGATGTATTTTCCTAAAGGCAAAGGCC	1				
	ACATACCGCGATCCTGCAATGTGGTATTTTCCTAAAGGCAAAGGCC	12				
	ACATACCGCGATCCTGCAATGVMATATTTTCCTAAAGGCAAAGGCC	6				
	ACATACCGCGATCCTGCAATGTGGTATTTTCCTAAAGGCAAAGGCC	1				
Fp_PFT1D	ACATACCGCGATCCTGCATGGTGGTATTTTCCTAAAGGCAAAGGCC	1				
	ACATACCGCGATCCTGCATGGNDTTATTTTCCTAAAGGCAAAGGCC	12				
	ACATACCGCGATCCTGCATGGVMATATTTTCCTAAAGGCAAAGGCC	6				
	ACATACCGCGATCCTGCATGGATGTATTTTCCTAAAGGCAAAGGCC	1				
Rp_TYR1	GTTAACTGCACCAGTGAAACC			Fragment B, reverse primer		
Fp_TYRN1A	GTTTCACTGGTGCAGTTAACTATNDTCGTGCTTTACCCATAAACTGG	6	Y235X			
Fp_TYRV1B	GTTTCACTGGTGCAGTTAACTATVMACGTGCTTTACCCATAAACTGG	3		Fragment C, forward primer		
Fp_TYRA1C	GTTTCACTGGTGCAGTTAACTATATGCGTGCTTTACCCATAAACTGG	0.5				
Fp_TYRT1D	GTTTCACTGGTGCAGTTAACTATTGGCGTGCTTTACCCATAAACTGG	0.5				
Rp_PUC	AGCGGATAACAATTTCACACAGG			Fragment C, reverse primer		
Fp_PUC_EH	CTGAAATGAGCTGTTGACAATTAATCATCGGCTCGTATAATG			Fragment 1A, forward primer		
Rp-BamHI	CAGGATCCCGGTATGTCAATATTTTCTTAAGAACAGACTTAGCACC			Fragment 1A, reverse primer		
Fp_BamHI	GGTGCTAAGTCTGTTCTTAAGAAAATATTGACATACCGGGATCCTG		R184 silent mutation,	Fragment BC, forward primer, introducing BamHI site		
Rp_PUC_EH	GACCATGATTACGCCAAGCTTGCATGC			Fragment BC, reverse primer		
Fp_PCEH	CGGATAACAATTTCACACAGG			Forward primer, StEH		
Rp_BCEH	GGAAACAGCTATGACCATG			Reverse primer, StEH		
Ncol_fp	AATCCTCTTCATCCACGGCTTCCCTGAACT		H31H, silent mutation	Forward primer, removing one Ncol site		
Paul_fp	CGACTGGGGCGCGCTAATTGCTTGGCATTT		L109L, silent mutation	Forward primer, introducing Paul site		
fp_D105A	GTGTTTGTCGTTGCGCACGCCTGGGGCGCGTTAATTGCTTGG			Forward primer for D105A mutagenesis		
rp_D105A	CCAAGCAATTAACGCGCCCCAGGCGTGCGCAACGACAAACAC			Reverse primer for D105A mutagenesis		

	Amino acid position					
Clone #	H153	Y154	P188	F189	Y235	Comments
HYPFV-2_1, -2_2, -3_1, -3_2, -3_3	o ^a	0	0	0	V (gtt)	
HYPFI-2, -3_1, -3_2, -3_3	0	0	0	0	I (att)	
HYPFR-1_1	0	0	0	0	R (cgt)	
HYPFR-1_2	0	0	0	0	R (cgt)	E198D (gag→gac)
HYPSE-2, -3	0	0	0	S (agt)	E (gaa)	
HYPFC-1, -3	0	0	0	0	C (tgt)	
HYPFD-1	0	0	0	0	D (gat)	
HYPFG-1	0	0	0	0	G (ggt)	
HYPFH-2	0	0	0	0	H (cat)	
VEPFR-1	V (gtt)	E (gaa)	0	0	R (cgt)	S311N (agc→aac)
GYFPV-1	G (ggt)	0	F (ttt)	P (cca)	V (gtt)	
HYFAV-3	0	0	F (ttt)	A (gca)	V (gtt)	
YNPFH-2	Y (tat)	N (aat)	0	0	H (cat)	
HYACK-1	0	0	A (gca)	C (tgt)	K (aaa)	
HYFKY-2	0	0	F (ttt)	K (aaa)	0	
HWPFT-2	0	W (tgg)	0	0	T (aca)	
ISTMK-3	I (att)	S (agt)	T (aca)	M (atg)	K (aaa)	
QMLGY-3	Q (caa)	M (atg)	L (ctt)	G (ggt)	0	
HYMMY-3	0	0	M (atg)	M (atg)		
CEYFC-3	C (tgt)	E (gaa)	Y (tat)	0	C (tgt)	
VKPFY-3	V (gtt)	K (aaa)	0	0	0	
HYFHY-3	0	0	F (ttt)	H (cat)	0	
HYAKM-3	0	0	A (gca)	K (aaa)	M (atg)	
HYEWW-3	0	0	E (gaa)	W (tgg)	W(tgg)	
WAPFH-3	W (tgg)	A (gca)	0	0	H (cat)	
HYYAW-3	0	0	Y (tat)	A (gca)	W (tgg)	
HYQQL-3	0	0	Q (caa)	Q (caa)	L (ctt)	
EAPFY-3	E (gaa)	A (gca)	0	0	0	
EQPQL-3	E (gaa)	Q (caa)	0	Q (caa)	V (gtt)	
KKMAW-3	K (aaa)	K (aaa)	M (atg)	A (gca)	W (tgg)	

Table S2 Deduced amino acid sequences of selected protein variants

 $^{\rm a}$ $_{\odot}$, no substitution. Naming is according to amino acid substitution in the linear sequence. The number following the one-letter sequence refers to the round of phage display selection from which the clone was isolated.

Supporting Figures

Fig. S1 Synthesis of building block 6 (see Figs. S4–S7 for NMR spectra).

Fig. S2 Block synthesis of bait substrate (8) used in phage display selection (see Fig. S8 for NMR spectra).

TLCs of the reaction mixture, ninhydrin and UV-detection

affer

extra

before

Txtra

OU)

mix 15min

Crude product, ninhydrin and UV-detection (marked with pencil)

SM

A a

Fig. S3 TLC chromatograms of synthesis intermediates leading to compound 8.

Fig. S5 ¹H-NMR (top) and COESY (bottom) spectra of compound 3.

Fig. S6 ¹H- (top) and ¹³C-NMR (bottom) spectra of compound 4.

Fig. S7 1 H- (top) and 13 C-NMR (bottom) spectra of compound 6.

Fig. S9 Silent mutations (in yellow) in the StEH1 cDNA that removes an *Ncol* site at codons 30 - 32 and introduces a unique *Paul* site at codons 107 - 109.

Fig. S10 Standard curve of peak area as a function of amount of alcohol 11.